Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ 21-10-02.doc
Скачиваний:
23
Добавлен:
15.11.2019
Размер:
823.81 Кб
Скачать
  1. Н еньютоновская жидкость Освальда - Вейля.

Используя в системе (2.14) соотношения (2.18) и (2.26), получим:

Сопоставляя это уравнение состояния с решением (2.20) приходим к дифференциальному уравнению относительно скорости:

(2.33)

Интегрируя это уравнение при граничном условии v (h) = 0, получим распределение скорости:

(2.34)

где: .

Интегральные характеристики потока при этом будут:

;

где - обобщённый параметр Рейнольдса и - приведённая вязкость жидкости Освальда -Вейля для плоской щели. При n = 1 и k =  формулы (2.34) - (2.35) совпадут с формулами (2.24) - (2.25).

  1. Турбулентный режим течения. Когда параметры , или больше критических значений, решение уравнения движения записывается в виде (сравните с 2.20):

.

Касательное напряжение в зависимости от типа жидкости связано со скоростью сдвига уравнениями вида (2.23), (2.27) или (2.33). Напряжение Рейнольдса в силу соотношений (2.10), (2.18) и (2.26) удовлетворяет уравнению Прандтля:

, (2.37)

где принимается, что величина l линейно зависит от расстояния до стенки канала s = h - х , т.е.

l = æs (2.38)

где æ - константа, определяемая из опыта.

Напряжение имеет существенное значение лишь в непосредственной близости от стенок канала, т.е. в узкой области, состоящей из ламинарного подслоя и буферной зоны, где ламинарные и турбулентные законы течения сравнимы между собой.

В основной области течения (турбулентное ядро) можно пренебречь напряжением. Поэтому после подстановки (2.37) и (2.38) в (2.36) получим следующее исходное дифференциальное уравнение: