Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_matem.doc
Скачиваний:
28
Добавлен:
28.04.2019
Размер:
4 Mб
Скачать

5. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.

Метод Гаусса - метод последовательного исключения переменных.

Метод Гаусса заключается в том, что с помощью элементарных преобразований строк и перестановок столбцов система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей их коэффициентов , получаемой приписыванием к матрице столбца свободных членов :

.

Следует отметить, что методом Гаусса можно решить любую систему уравнений вида .

Пример. Методом Гаусса решить систему:

Выпишем расширенную матрицу системы.

Шаг 1. Поменяем местами первую и вторую строки, чтобы стал равным 1.

Шаг 2. Умножим элементы первой строки на (–2) и (–1) и прибавим их к элементам второй и третьей строк, чтобы под элементом в первом столбце образовались нули.

Шаг 3. Умножим элементы третьей строки на (–0,5).

Шаг 4. Поменяем местами вторую и третью строки.

Шаг 5. Поменяем местами второй и третий столбец. (Шаги 3, 4, 5 приведены с тем, чтобы ).

Шаг 6. Элементы второй строки умножим на 3 и прибавим их к элементам третьей строки, тогда под элементом появится нуль.

(называется расширенная матрица системы) .

Расширенная матрица приведена к треугольному виду. Соответствующая ей система имеет вид:

Из последнего уравнения ; из второго ; из первого .

Таким образом, , , .

6. Решение систем п линейных уравнений с п переменными с помощью обратной матрицы (вывод формулы Х=А –1В).

Для получения решения системы при в общем виде предположим, что квадратная матрица системы невырожденная, т.е. ее определитель . В этом случае существует обратная матрица .

Метод обратной матрицы.

Запишем систему в матричной форме:

, где

- матрица коэффициентов при переменных,

- матрица-столбец переменных; - матрица столбец свободных членов.

Умножим слева обе части равенства на матрицу :

;

;

;

.

Таким образом, решение системы в матричном виде .

Пример. Решить систему уравнений методом обратной матрицы.

Р е ш е н и е: Обозначим ; ; .

Тогда в матричной форме система имеет вид: . Определитель матрицы , т.е. обратная матрица существует: .

Определим ,

Существенным недостатком решения систем линейных уравнений с переменными по формулам Крамера и методом обратной матрицы является их большая трудоемкость, связанная с вычислением определителей и нахождения обратной матрицы.

7. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).

Теорема Крамера. Пусть - определитель матрицы системы, а - определитель матрицы, получаемой из матрицы заменой -го столбца столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам:

, ( ).

В соответствии с обратной матрицей , где - матрица, присоединенная к матрице . Т.к. элементы матрицы есть алгебраические дополнения элементов матрицы , транспонированной к , то запишем равенство в развернутой форме:

.

Учитывая, что , получим после умножения матриц:

, откуда следует, что для любого .

На основании свойства 9 определителей , где - определитель матрицы, полученной из матрицы заменой -го столбца столбцом свободных членов. Следовательно .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]