Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_matan.doc
Скачиваний:
39
Добавлен:
15.04.2019
Размер:
735.74 Кб
Скачать

11. Классификация точек разрыва. Примеры.

Точки разрыва функции.

Определение: Предельные точки области определения функции, в которых эта функция не является непрерывной, называются точками её разрыва.

Примеры:

1) f(x) = [x].

x = n (целое)-точка разрыва.

2) D(x) = (функция Дирихле).

D(x) имеет разрыва в каждой точке числовой прямой, так как  точки а D(x) не существует.

3) f(x) = xD(x)

f(x) непрерывна в точке х = 0, так как f(x) = 0 = f(0).

f(x) разрывна во всех остальных точках, так как  а  0 f(x) не существует- (докажите самостоятельно).

Классификация точек разрыва.

1)Устранимый разрыв.

Точка а называется точкой устранимого разрыва функции f(x), если  f(x), но

f(x)  f(a) , либо в точке а функция f(x) вообще не определена.

Пример:

f(x) = . Будет доказано, что = 1, но в точке х = 0 функция не определена, тем самым х = 0 -точка устранимого разрыва этой функции.

Если положить f(x) = , то f(x) станет непрерывной в точке х = 0, то есть разрыв будет устранён.

2) Разрыв первого рода.

Точка а называется точкой разрыва первого рода функции f(x), если  f(x) и f(x), но f(x)  f(x).

Пример:

f(x) = [x]

x = n (целое) - точки разрыва первого рода этой функции.

3) Разрыв второго рода.

Точка а называется точкой разрыва второго рода функции f(x), если в этой точке не существует хотя бы один из односторонних пределов.

Примеры:

1) f(x) = , х = 0 - точка разрыва второго рода, так как f(+0) = +, f(-0) = -.

2) Функция Дирихле D(x)-любая точка является точкой разрыва второго рода.

Функция f(x) называется непрерывной на множестве Х, если она непрерывна в каждой точке этого множества.

В частности, f(x) непрерывна на сегменте [a, b] (a < b), если она непрерывна в каждой внутренней точке сегмента, непрерывна в точке а справа и в точке b слева.

Пример:

f(x) = непрерывна на любом сегменте, в точках которого (х) не обращается в нуль.

12.Понятие производной, дифференцируемости, первого дифференциала функции независимого аргумента.

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием. Обратный процесс — интегрирование.

Производная   функции f в точке x0, будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция f является дифференцируемой в точке x0 тогда и только тогда, когда её производная в этой точке существует и конечна:

Для дифференцируемой в x0 функции f в окрестности U(x0) справедливо представление

 при 

Пусть функция y=f(x) дифференцируема на некотором отрезке [ab]. В таком случае ее производная представляет собой тоже некоторую функцию х. Продифференцировав эту функцию, мы получим так называемую вторую производную (или производную второго порядка) функции f(x). Продолжая эту операцию, можно получить производные третьего, четвертого и более высоких порядков. При этом f`(x) будем называть производной первого порядка.

Определение 19.1. Производной n-го порядка (или n-й производной) от функции f(x) называется производная (первого порядка) от ее (n-1)-й производной.

Обозначение: у(n)=(y(n-1))΄=f(n)(x). Производные 2-го и 3-го порядка обозначаются соответственно y΄ и ΄.

Примеры.

Найдем производную 3-го порядка от функции y=x³-5x²+3x+12.

=3x²-10x+3, y΄΄=()΄=6x-10, y΄΄΄=(y΄΄)΄=6.

Получим общую формулу для производной n-го порядка функции y=abx.

=abx·lna·b, y΄΄=lna·b(abx)΄=abx·ln²a·b²,…, y(n)=abx·lnna·bn.

Инвариантность формы первого дифференциала.

Пусть y = f(x), где х - независимая переменная. Тогда оп определению dy = f'(x)dx (1) Где dx = x. dy называется также первым дифференциалом функции. Покажем, что формула (1) сохраняется и в том случае, когда х является не независимой переменной, а дифференцируемой функцией x = (x), t - независимая переменная. y = f((t))  F(t), dy = F'(t)dt. Воспользуемся формулой дифференцирования сложной функции:

F'(t) = f'((t))'(t).

dy = f'((t))'(t)dt.

Но, так как x = (t), то dx = '(t)dt, dy = f'(x)dx, то есть формула 1 остается в силе и в этом случае. Это свойство называется инвариантностью формы первого дифференциала. Отметим, что не меняется только форма (вид) первого дифференциала, а содержание меняется. Именно, если х - независимая переменная, то dx = x, если же x = (t), то dy = '(t)dt x.

Дифференциалом n-го порядка называется первый дифференциал от дифференциала (n-1)-го порядка:

dny = d(dn-1y) = (f(n-1)(x)dn-1x)΄ = f(n)(x)dnx. (19.4)

Свойства дифференциалов высших порядков.

Производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

. (19.5)

Дифференциалы высших порядков не обладают свойством инвариантности.

Покажем это на примере второго дифференциала. Если y=F(φ(x))=F(u), где u=φ(x), то d²y=d((u)du). Но du=φ΄(x)dx зависит от х, поэтому d²y=d((u))du+Fu΄(u)d(du)=F΄΄uu(u)(du)²+Fu΄(u)d²u, где d²u=φ΄΄(x)(dx)². Таким образом, форма второго дифференциала изменилась при переходе к аргументу u.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]