Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_matan.doc
Скачиваний:
39
Добавлен:
15.04.2019
Размер:
735.74 Кб
Скачать

3. Свойства бесконечно малых последовательностей.

  • Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

  • Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

  • Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

  • Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

  • Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

  • Любая бесконечно малая последовательность ограничена.

  • Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

  • Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы — нули.

  • Если (xn) — бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность (1 / xn), которая является бесконечно малой. Если же (xn) всё же содержит нулевые элементы, то последовательность (1 / xn) всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

  • Если (αn) — бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность (1 / αn), которая является бесконечно большой. Если же (αn) всё же содержит нулевые элементы, то последовательность (1 / αn) всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

4.Свойства произвольных сходящихся последовательностей. Сходящиеся в несобственном смысле последовательности. Монотонные последовательности. Число е. Теорема о стягивающихся сегментах.

Последовательность   элементов множества   называется неубывающей, если каждый элемент этой последовательности не превосходит следующего за ним.

 — неубывающая 

Последовательность   элементов множества   называется невозрастающей, если каждый следующий элемент этой последовательности не превосходит предыдущего.

 — невозрастающая 

Последовательность   элементов множества   называется возрастающей, если каждый следующий элемент этой последовательности превышает предыдущий.

 — возрастающая 

Последовательность   элементов множества   называется убывающей, если каждый элемент этой последовательности превышает следующий за ним.

 — убывающая 

Последовательность называется монотонной, если она является неубывающей, либо невозрастающей.[1]

Последовательность называется строго монотонной, если она является возрастающей, либо убывающей.

Очевидно, что строго монотонная последовательность является монотонной.

Иногда используется вариант терминологии, в котором термин «возрастающая последовательность» рассматривается в качестве синонима термина «неубывающая последовательность», а термин «убывающая последовательность» — в качестве синонима термина «невозрастающая последовательность». В таком случае возрастающие и убывающие последовательности из вышеприведённого определения называются «строго возрастающими» и «строго убывающими», соответственно.

Свойства сходящихся последовательностей

  • Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

  • Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

  • Любая сходящаяся последовательность элементов хаусдорфова пространства имеет только один предел.

  • Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

  • Последовательность сходится тогда и только тогда, когда она является ограниченной и при этом её верхний и нижний пределы совпадают.

  • Если последовательность (xn) сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность (1 / xn), которая является ограниченной.

  • Сумма сходящихся последовательностей также является сходящейся последовательностью.

  • Разность сходящихся последовательностей также является сходящейся последовательностью.

  • Произведение сходящихся последовательностей также является сходящейся последовательностью.

  • Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

  • Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

  • Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

  • Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

  • Если все элементы некоторой последовательности, начиная с некоторого номера, лежат на отрезке между соответствующими элементами двух других сходящихся к одному и тому же пределу последовательностей, то и эта последовательность также сходится к такому же пределу.

  • Любую сходящуюся последовательность (xn) можно представить в виде (xn) = (a + αn), где a — предел последовательности (xn), а αn — некоторая бесконечно малая последовательность.

  • Всякая сходящаяся последовательность является фундаментальной. При этом фундаментальная числовая последовательность всегда сходится (как и любая фундаментальная последовательность элементов полного пространства).

Экспонента или число е

Р-рим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1) . Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е2,7128… Число е

Принцип вложенных отрезков

Пусть на числовой прямой задана посл-ть отрезков [a1,b1],[a2,b2],…,[an,bn],…

Причем эти отрезки удовл-ют сл. усл.:

1) каждый посл-щий вложен в предыдущий, т.е. [an+1,bn+1][an,bn], n=1,2,…;

2) Длины отрезков 0 с ростом n, т.е. lim(n)(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.

Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.

Док-во {an}-посл-ть левых концов отрезков явл. монотонно не убывающей и ограниченной сверху числом b1.

{bn}-посл-ть правых концов монотонно не возрастающей, поэтому эти посл-ти явл. сходящимися, т.е. сущ-ют числа с1=lim(n)an и с2=lim(n)bn => c1=c2 => c - их общее значение. Действительно имеет предел lim(n)(bn-an)= lim(n)(bn)- lim(n)(an) в силу условия 2) o= lim(n)(bn-an)=с2-с1=> с1=с2=с

Ясно что т. с общая для всех отрезков, поскольку n ancbn. Теперь докажем что она одна.

Допустим что  другая с‘ к которой стягиваются все отрезки. Если взять любые не пересекающиеся отрезки с и с‘, то с одной стороны весь “хвост” посл-тей {an},{bn} должен нах-ся в окрестностях т-ки с‘‘(т.к. an и bn сходятся к с и с‘ одновременно). Противоречие док-ет т-му.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]