Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_matan.doc
Скачиваний:
39
Добавлен:
15.04.2019
Размер:
735.74 Кб
Скачать

7. Понятие функции. Предельное значение функции (по Коши и по Гейне)

числовая функция — это функция, области определения и значений которой являются подмножествами числовых множеств — как правило, множества вещественных чисел   или множества комплексных чисел  .

Односторонние пределы.

Определение 13.11. Число А называется пределом функции у = f(x) при х, стремящемся к х0 слева (справа), если такое, что |f(x)-A|<ε при x0 – х < δ (х - х0 < δ).

Обозначения:

Теорема 13.1(второе определение предела). Функция y=f(x) имеет при х, стремящемся к х0, предел, равный А, в том и только в том случае, если оба ее односторонних предела в этой точке существуют и равны А.

Доказательство.

1) Если , то и для x0 – х < δ, и для х - х0 < δ |f(x) - A|<ε, то есть

  1. Если , то существует δ1: |f(x) - A| < ε при x0 x < δ1 и δ2: |f(x) - A| < ε при х - х0 < δ2. Выбрав из чисел δ1 и δ2 меньшее и приняв его за δ, получим, что при |x - x0| < δ |f(x) - A| < ε, то есть . Теорема доказана.

Замечание. Поскольку доказана эквивалентность требований, содержащихся в определении предела 13.7 и условия существования и равенства односторонних пределов, это условие можно считать вторым определением предела.

Определение 4 (по Гейне)

Число А называется пределом функции при если любой ББП значений аргумента последовательность соответствующих значений функции сходится к А.

Определение 4 (по Коши).

Число А называется если . Доказывается, что эти определения равносильны.

8. Критерий Коши существования предельного значения функции в точке.

Для того, чтобы функция имела предел в точке a, необходимо и достаточно, чтобы она удовлетворяла в этой точке условию Коши (для   > 0   > 0,  x' и x'', 0 <x' - a < , 0 <x''- a < : f(x') - f(x'') < 

9. Первый и второй замечательный пределы. Таблица эквивалентности. Свойства пределов функции в точке, связанные с арифметическими операциями, с непавенствами.

Теорема 14.7 (первый замечательный предел). .

Доказательство. Рассмотрим окружность единичного радиуса с центром в начале координат и будем считать, что угол АОВ равен х (радиан). Сравним площади треугольника АОВ, сектора АОВ и треугольника АОС, где прямая ОС – касательная к окружности, проходящая через точку (1;0). Очевидно, что .

у

B C

A x

Используя соответствующие геометрические формулы для площадей фигур, получим отсюдa, что , или sinx<x<tgx. Разделив все части неравенства на sinx (при 0<x<π/2 sinx>0), запишем неравенство в виде: . Тогда , и по теореме 14.4 .

Замечание. Доказанное справедливо и при x<0.

Теорема 14.8 (второй замечательный предел). .

Замечание. Число е 2,7.

Доказательство.

  1. Докажем сначала, что последовательность при имеет предел, заключенный между 2 и 3. По формуле бинома Ньютона

возрастающая переменная величина при возрастающем n. С другой стороны,

и т.д., поэтому

Следовательно, - ограниченная и возрастающая величина, поэтому она имеет предел (см. теорему 14.6). Значение этого предела обозначается числом е.

  1. Докажем, что .

а) Пусть . Тогда

. При . Найдем пределы левой и правой частей неравенства:

Следовательно, по теореме 14.4 .

б) Если то и Теорема доказана.

Следствия из второго замечательного предела.

1.

2. где a > 0, y = ax - 1.

3.

Свойства предела ф-ции в точке

1) Если предел в т-ке сущ-ет, то он единственный

2) Если в тке х0 предел ф-ции f(x) lim(xx0)f(x)=A

lim(xx0)g(x)B=> то тогда в этой т-ке  предел суммы, разности, произведения и частного. Отделение этих 2-х ф-ций.

а) lim(xx0)(f(x)g(x))=AB

б) lim(xx0)(f(x)g(x))=AB

в) lim(xx0)(f(x):g(x))=A/B

г) lim(xx0)C=C

д) lim(xx0)Cf(x)=CA

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]