Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 СЕМЕСТР ФОМ..doc
Скачиваний:
7
Добавлен:
20.12.2018
Размер:
2.93 Mб
Скачать

Тема 2. Основные теоремы о дифференцируемых функциях и их приложения.

Теорема Роля. Если функция непрерывна на отрезке , дифференцируема на интервале и , то на существует точка такая, что .

Теорема Лагранжа. Если функция непрерывна на отрезке и дифференцируема на интервале , то на существует точка такая, что (формула Лагранжа).

Теорема Коши. Если функции и непрерывны на отрезке , дифференцируемы на интервале и при всех , то на интервале существует точка такая, что

(формула Коши).

Если функция дифференцируема раз в точке , то при имеет место формула Тейлора (порядка ) с остаточным членом в форме Пеано

.

Если предположить существование -ой производной в окрестности точки то для любой точки из этой окрестности имеет место формула Тейлора (порядка ) с остаточным членом в форме Лагранжа

где , .

Формула Тейлора (с остаточным членом в любой форме) в частном случае обычно называется формулой Маклорена.

Формула Тейлора используется при вычислении значений функции с заданной степенью точности , при вычислении пределов функций.

Из формулы Тейлора с остаточным членом в форме Лагранжа следует, что , где -минимальный из номеров для которых .

При вычислении пределов функций используют формулу Тейлора с остаточным членом в форме Пеано.

Правило Лопиталя. Предел отношения двух дифференцируемых или бесконечно малых или бесконечно больших функций при ( - число или символ ) равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле: . Правило Лопиталя используют для раскрытия неопределённостей видов и .

На каждом этапе применения правила Лопиталя следует пользоваться упрощающими отношение тождественными преобразованиями, а также комбинировать это правило с любыми другими приёмами вычисления пределов. В некоторых случаях может потребоваться неоднократное применение данного правила.

Раскрытие неопределённостей видов , , , , путём преобразований:

, ,

приводится к раскрытию неопределенностей видов и .

Тема 3. Исследование функций с помощью производных, построение их графиков.

3.1 Возрастание, убывание функций. Экстремум.

Функция называется возрастающей (убывающей) на интервале , если для любых , удовлетворяющих условию , выполняется неравенство ().

Если функция дифференцируема на интервале и () при всех , то функция возрастает (убывает) на .

Точка , принадлежащая области определения функции , называется критической точкой функции, если в этой точке или не существует. Критические точки функции разбивают её область определения на интервалы монотонности (интервалы возрастания и убывания).

Точка называется точкой минимума (максимума) функции , если существует окрестность точки такая, что для всех точек этой окрестности выполняется неравенство (), а число - минимумом (максимумом) функции. Точки минимума и максимума функции называются точками экстремума, а значения функции в этих точках – экстремумами функции.

Необходимое условие экстремума. Если - точка экстремума функции , то или не существует.

Первое достаточное условие экстремума. Пусть функция дифференцируема в окрестности точки , в которой или не существует. Тогда, если производная , при переходе слева направо через точку : 1) меняет знак с «+» на «», то - точка максимума; 2) меняет знак с знак с «» на «+», то - точка минимума; 3) сохраняет знак, то не является точкой экстремума.

Второе достаточное условие экстремума. Пусть функция дважды дифференцируема в точке , в которой , . Тогда: 1) если , то - точка максимума; 2) если , то - точка минимума.