Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лапыгин_Теория организации 2007.doc
Скачиваний:
19
Добавлен:
10.12.2018
Размер:
13.66 Mб
Скачать

5.4. Система методов анализа

Системный анализ применяется для решения таких проблем, которые не могут быть сформулированы и решены с помощью отдельных формальных методов. В системном ана- лизе используются как формальные методы, так и методы качественного анализа, напра- вленные на активизацию творческого мышления экспертов.

Системный анализ можно рассматривать не только как одно из направлений развития общей теории систем, но и идей кибернетики: он исследует общие закономерности, относя- щиеся к сложным системам, которые изучаются любой наукой.

Системный анализ сформировался в 60-х гг. XX в., когда на основе теории эффектив- ности, теории игр, теории массового обслуживания появилась синтетическая дисциплина

– «Исследование операций». Затем она постепенно переросла в системный анализ, кото- рый явился синтезом исследования операций и теории управления. Он применяется глав- ным образом в исследовании искусственных социотехнических систем.

Возникающая острая проблема в соответствии с системным подходом должна быть рассмотрена как нечто целое, как система во взаимодействии всех ее компонентов между собой и во взаимодействии целого с внешней средой. Однако материальные системы настолько сложны, что для целей их анализа используются, как правило, модели систем.

В этом смысле системный анализ представляет собой совокупность методов и средств исследования и конструирования сложных объектов, методов обоснования решений при создании и управлении техническими, экономическими и социальными системами.

Применительно к социальным системам системный анализ используется как один из важнейших методов системного управления организацией. Построение данных моделей начинается со сбора информации и анализа разрозненных фактов, позволяющих сделать обобщения и выявить эмпирические закономерности. Далее переходят к определению меха- низмов, реализующих эти закономерности, поскольку если существует какая-то подтвер- жденная фактами закономерность, то существуют и механизмы, обеспечивающие проявле- ние этой закономерности.

Споры о том, можно ли считать системный анализ наукой, продолжаются до сих пор. Наибольшие сложности возникают с исследованием систем, в которых присутствуют люди.

Подобные системы слабо формализуются в силу многофакторности связей между элемен- тами. Тем не менее общий алгоритм проведения системного анализа заключается в следую- щем: формулирование проблемы, выявление целей, формирование критериев, генерирова- ние альтернатив и выбор варианта решения для последующей реализации.

Можно сделать заключение о том, что системный анализ – «это дисциплина, занима- ющаяся проблемами принятия решений в условиях, когда выбор альтернативы требует ана- лиза сложной информации различной физической природы» [8]. Отсюда следует вывод, что истоки системного анализа и его методические концепции лежат в дисциплинах, ориенти- рованных на проблемы принятия решений, в теории исследования операций и общей теории управления.

Но, несмотря на значительную составляющую системного анализа, ориентированную на формальный инструментарий и точные методы, традиционные приемы анализа, основан- ные на интуиции человека и его склонности к ассоциациям (и еще многое другое, что лежит вне математики и пока еще не присуще искусственному интеллекту), продолжают активно использоваться в системном анализе.

Главное достижение системного анализа состоит в разработке методов перехода от неформальных задач к формальным, от моделей типа «черного ящика» к моделям типа

«белого ящика». Большая часть этих методов имеет неформальный характер, но они доста- точно конкретны и пригодны для использования как технология решения проблем.

В системном анализе используются следующие методы:

• строго формализованные (экспериментальные исследования, построения моделей);

• слабо формализованные (экспертные оценки, коллективный выбор);

• в принципе неформализованные операции (формулирование проблем, выявление целей, определение критериев, генерирование альтернатив).

Если рассматривать вопрос алгоритмизации системного анализа, то необходимо отме- тить, что любой процесс исследования по своей природе алгоритмичен. Алгоритм является планом этого процесса. В то же время очевидно, что для каждой проблемы может потребо- ваться особый алгоритм анализа.

Классификация, разработанная в свое время Ю. И. Черняком, разделяет методы ана- лиза на четыре основные группы по принципу их применения в системных исследованиях: неформальные, графические, количественные и моделирования. Кроме того, единая система методов системного анализа представлена в учебнике В. Н. Волковой и А. А. Денисова

«Основы теории систем и системного анализа» [4].

Аналитические методы позволяют описать ряд свойств многомерной и многосвязной системы, отображаемой в виде одной-единственной точки, совершающей движение в л-мер- ном пространстве. Это отображение осуществляется с помощью функции f (s) или посред- ством оператора (функционала) F(S). Также возможно отобразить точками две или более системы или их части и рассматривать взаимодействие этих точек. Каждая из них совершает движение и имеет свое поведение в л-мерном пространстве. Это поведение точек в простран- стве и их взаимодействие описываются аналитическими закономерностями и могут быть представлены в виде величин, функций, уравнений или системы уравнений. Аналитические методы являются основой классической математики и математического программирования. Они применяются лишь в том случае, когда свойства системы могут быть представлены в детерминированных параметрах или в виде зависимостей между ними.

Статистические методы отображают систему с помощью случайных (стохастиче- ских) событий, процессов, которые описываются соответствующими вероятностными (ста- тистическими) характеристиками и статистическими закономерностями. В данном случае система представляется в виде «размытой» точки (области) в л-мерном пространстве, в кото- рую переводится система, с учетом ее свойств, посредством оператора Ф[?х;]. Статисти-

ческие методы применяются для исследования сложных недетерминированных (самораз- вивающихся, самообучающихся) систем, а также в прикладной информатике для создания программ моделирования различных систем.

Теоретико-множественные методы представления систем являются основой постро- ения общей теории систем по М. Месаровичу. Эти методы позволяют описывать систему в универсальных общих понятиях: множество, элемент множества и отношения на мно- жествах. Множества могут задаваться двумя способами: перечислением элементов (а1, а2,...,an) и названий характеристического свойства (имя, отражающее это свойство), напри- мер: А, В. При использовании таких методов допускается введение любых отношений между элементами на основе математической логики, которая является формальным язы- ком описания отношений между элементами, относящимися к разным множествам. Теоре- тико-множественные методы позволяют описывать сложные системы на формальном языке моделирования. Они используются в том случае, когда большая и сложная система не может быть представлена лишь методами одной предметной области, а требует взаимопонимания между специалистами разных наук. Теоретико-множественные методы системного анализа становятся основой развития новых языков программирования и автоматизации проектиро- вания систем, которые применяются в прикладной информатике.

Логические методы являются языком описания систем в понятиях алгебры логики, которая лежит в основе функционирования микроэлементов любого компьютера. Наиболь- шее распространение логические методы получили под названием Булевой алгебры как бинарного представления о состоянии компьютерных схем. Каждое состояние элемента рас- сматривается в качестве 1 или 0. Эти методы используются для создания моделей сложных систем, адекватных законам математической логики построения устойчивых структур.

Лингвистические, семиотические методы предназначены для создания специаль- ных языков описания систем в виде понятий тезауруса (множества смысловыражающих эле- ментов языка с заданными смысловыми отношениями и связями). Лингвистические методы используются в прикладной информатике для формального представления правил (грамма- тики) соединения понятий в содержание смысловых выражений. Семиотика базируется на понятиях «символ» (знак), «знаковая система», «знаковая ситуация», т. е. для символиче- ского описания содержания в вычислительной технике.

Лингвистические и семиотические методы стали широко применяться в том случае, когда для первого этапа исследования невозможно формализовать принятие решений в плохо формализуемых ситуациях и нельзя использовать аналитические и статистические методы.

Графические методы позволяют наглядно отображать объект в виде образа системы, ее структуры и связей в обобщенном виде. Графические методы могут быть линейно-плос- костными и объемными. Наиболее употребляемые методы изображения системы – в виде графика Ганта, диаграмм, гистограмм, рисунков и структурных схем. Графические пред- ставления наиболее наглядно описывают ситуацию или процесс для принятия решения в динамично меняющихся условиях. Такие методы применяются для структурно-функцио- нального анализа сложных систем и происходящих в них процессов, особенно при моде- лировании информационно управляющих систем. В них необходимо учитывать взаимодей- ствие человека и структурных организаций, технических устройств. Графические методы широко применяются на практике для получения управляющих решений на основе сетевого планирования.

В системном исследовании, как правило, используются все типы методов. На каждом этапе исследования выбирают те из них, которые при наилучшем сочетании позволяют создать аргументированную и доказательную платформу исследования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]