Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Проектирование механической части воздушных ЛЭП....docx
Скачиваний:
78
Добавлен:
20.11.2018
Размер:
1.46 Mб
Скачать

5 Изоляторы и линейная арматура

5.1 Типы изоляторов и их характеристики

Изоляторы, используемые на воздушных ЛЭП, называются линейными. Линейные изоляторы предназначены для изоляции и крепления проводов на линиях и в распределительных устройствах подстанций. Изготовляются изоляторы из фарфора, закаленного стекла и полимерных материалов.

Полимерные изоляторы имеют ряд преимуществ перед стеклянными и фарфоровыми. Масса полимерных изоляторов в 10-20 раз меньше массы гирлянд изоляторов для ВЛ соответствующего класса напряжения. Это позволяет получить существенные преимущества при транспортировке, монтаже и эксплуатации ЛЭП. Полимерные изоляторы обладают большой механической прочностью и не разрушаются при обстреле их дробью и даже пулями. Линейные изоляторы из полимерных материалов практически не пробиваемы при воздействии грозовых и коммутационных перенапряжений. Их применение в качестве изолирующих межфазовых распорок позволяет ограничить пляску проводов.

В настоящее время выпускаются два типа полимерных изоляторов (рис. 5.1а,б) по действующему ОСТ 34-27-688-84. В качестве несущего компонента изолятора применяется однонаправленный стеклопластиковый стержень 3, состоящий из десятков тысяч тончайших стеклянных волокон, обладающих высокой механической прочностью. Стеклопластиковый стержень защищен от внешних воздействий защитной оболочкой 2, стойкой к ультрафиолетовому излучению и химическим воздействиям. Это необходимо в связи с тем, что связующее вещество стеклопластикового стержня не обладает достаточной стойкостью к атмосферным воздействиям. На концах несущего стержня крепятся металлические оконцеватели 1, которые должны обеспечи вать высокую прочность и надежность изолятора. Для этого применяются два способа оконцевания –

клиновая и прессуемая заделки. За счет применения оконцевателей с клиновой заделкой длина изолятора может быть несколько сокращена.

Изоляторы делят на две основные группы: штырьевые и подвесные. Штырьевые изоляторы (рис. 5.2) крепятся на опорах с помощью штырей или крючьев и применяются на ЛЭП напряжением до 35 кВ. На номинальное напряжение 6, 10 кВ и ниже изоляторы изготавливают одноэлементными, а на 20, 35 кВ – двухэлементными. Подвесные изоляторы тарельчатого типа (рис. Д1 приложения Д) крепятся к опоре с помощью линейной арматуры. Эти изоляторы могут соединяться между собой, образуя гирлянды, которые бывают поддерживающими и натяжными. Первые монтируются на промежуточных опорах, вторые – на анкерных. Подвесные изоляторы применяются на ЛЭП номинальным напряжением 35 кВ и выше.

Маркировка изоляторов состоит из букв и цифр. Для штырьевых изоляторов первая буква обозначает тип, вторая –материал изолятора, цифра указывает величину номинального напряжения. Например: ШС-10 – штырьевой, стеклянный на 10 кВ. Для подвесных изоляторов буквы обозначают тип изоля тора (П – подвесной; Л - линейный), материал изолятора (Ф – фарфоровый; С – стеклянный; Г – для загрязненных районов). Цифра показывает разрушающую электромеханическую нагрузку в килоньютонах. После цифры могут быть еще буквы (А, Б, В), показывающие исполнение изолятора. Например: ПФ70 – подвесной, фарфоровый, с разрушающей электромеханической нагрузкой 70 кН. Для полимерных изоляторов буквы обозначают тип (Л – линейный), материал покрытия (К – кремнийорганическое, П – полиолефиновое покрытие). Цифра показывает разрушающую электромеханическую нагрузку в кН; номинальное электрическое напряжение. После цифр буква показывает исполнение изолятора. Например: ЛП-70/110-ВЗ – линейный, с полиолефиновым покрытием, с разрушающей нагрузкой 70 кН, на напряжение 110 кВ.

Основными характеристиками изоляторов являются сухоразрядное, мокроразрядное и импульсное разрядное напряжения. Сухоразрядным называется напряжение промышленной частоты, при котором происходит перекрытие изолятора с сухой и чистой поверхностью. Мокроразрядным называется напряжение промышленной частоты, при котором изолятор перекрывается в условиях дождя. Импульсное разрядное напряжение определяется при воздействии на изолятор стандартной волны перенапряжения.

При эксплуатации линейные изоляторы подвергаются одновременному воздействию электрического напряжения и механической нагрузки. Поэтому испытания подвесных изоляторов производятся при воздействии напряжения (75 % сухоразрядного) и при постепенном повышении механической нагрузки. Механическая нагрузка, при которой находящийся под напряжением изолятор разрушается, называется разрушающей электромеханической нагрузкой. Эта нагрузка указывается в технических характеристиках изоляторов, которые приведены в таблице приложения Д.