Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurant_Robbins_Chto_takoe_matematika.pdf
Скачиваний:
200
Добавлен:
26.03.2016
Размер:
5.82 Mб
Скачать

Г Л А В А III

Геометрические построения. Алгебра числовых полей

Введение

Задачи на построение всегда были одним из самых любимых предметов геометрических занятий. С помощью только циркуля и линейки, как читатель знает из школьного курса, можно выполнить очень много разнообразных построений: разделить пополам отрезок или угол, провести через точку перпендикуляр к данной прямой, вписать в данный круг правильный шестиугольник и т. д. Во всех этих построениях линейка служит только для того, чтобы проводить прямую линию, но не для того, чтобы измерять или откладывать расстояния. Традиционное ограничение — пользоваться только циркулем и линейкой — восходит к глубокой древности, хотя на практике сами греки без колебания прибегали и к другим инструментам.

Одной из самых знаменитых, классических задач на построение является задача Аполлония (около 220 года до нашей эры): даны три круга, требуется провести четвертый, касательный к трем данным. В частности, не исключено, что один или большее число из данных кругов «вырождаются» в точку или прямую («круг» с «нулевым» или с «бесконечным» радиусом). Например, может идти речь о проведении круга, касательного к двум данным прямым и проходящего через данную точку. Если такого рода специальные случаи не связаны с затруднениями, то в общей постановке задача принадлежит к числу весьма трудных.

Из всех задач на построение задача построения (с помощью циркуля и линейки) правильного n-угольника представляет, может быть, наибольший интерес. Для ряда значений n, например, n = 3, 4, 5, 6, решение было известно уже в древности и излагается в школьной геометрии. Но в случае правильного семиугольника (n = 7) построение, как было доказано, невозможно. Вот еще три классические проблемы, решение которых разыскивалось долго и безрезультатно: разделить на три равные части данный произвольный угол, удвоить данный куб (т. е. построить сторону куба, объем которого вдвое больше, чем объем куба, сторона которого задана) и выполнить «квадратуру» круга (т. е. построить квадрат,

144

ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

гл. III

имеющий такую же площадь, как и данный круг). И в этих проблемах предполагается, что, кроме циркуля и линейки, другие инструменты не применяются.

Проблемы подобного рода, не поддающиеся решению, привели к одному из самых замечательных и оригинальных направлений математической мысли. После нескольких столетий безуспешных поисков математики утвердились в подозрении, что найти решение невозможно. На очередь встал соблазнительный по своей трудности новый вопрос: как можно доказать, что та или иная проблема не может быть разрешена?

В области алгебры тот же вопрос возник в связи с проблемой решения уравнений 5-й и более высоких степеней. В течение XVI столетия было установлено, что алгебраические уравнения степени 3 и 4 решаются посредством той же процедуры, что и квадратные. Эта процедура может быть, вообще говоря, охарактеризована следующим образом: решения, или «корни», уравнения представляются в виде выражений, составленных из коэффициентов уравнения и содержащих операции, из которых каждая есть или рациональная — сложение, вычитание, умножение, деление, — или же извлечение корня — квадратного, кубического или четвертой степени. Говорят короче, что алгебраическое уравнение не выше четвертой степени «решается в радикалах» (radix по-латыни означает «корень»). Казалось как нельзя более естественным пытаться обобщить эту процедуру на уравнения 5-й и более высоких степеней, пользуясь, конечно, и радикалами соответствующих степеней. Но ни одна из попыток не увенчалась успехом. В XVIII столетии были случаи, когда даже выдающиеся математики впадали в заблуждение, предполагая, что решение ими найдено. Но только в начале XIX столетия у итальянца Руффини (1765–1822) и у гениального норвежского математика Н. Г. Абеля (1802–1829) возникла поистине революционная для того времени идея —

доказать невозможность решения в радикалах общего алгебраического уравнения степени n. Нужно понимать совершенно отчетливо, что речь не идет о существовании решения алгебраического уравнения степени n: существование решений было строго доказано Гауссом в его докторской диссертации в 1799 г. Таким образом, уже не было никаких сомнений в том, что каждое алгебраическое уравнение действительно имеет корни, в особенности после того, как были указаны приближенные методы для их вычисления с какой угодно степенью точности. «Численное» решение алгебраических уравнений, имеющее громадное значение в приложениях, прекрасно разработано. Проблема Абеля и Руффини была поставлена совсем иначе: может ли быть найдено решение с помощью одних только рациональных операций и операций извлечения корней? Именно стремление добиться полной ясности в этом вопросе послужило толчком для великолепного развития современной алгебры и теории

ВВЕДЕНИЕ

145

групп, начатого работами Руффини, Абеля и Э. Галуа (1811–1832). Доказательство невозможности некоторых геометрических построе-

ний оказывается примером, иллюстрирующим направление в алгебре, о котором только что было сказано. Именно оперируя алгебраическими понятиями, мы сможем установить в этой главе невозможность и трисекции угла, и построения правильного семиугольника, и удвоения куба с помощью одних только циркуля и линейки. (Проблема квадратуры круга значительно сложнее; см. по этому поводу стр. 160.) Подходя ближе к интересующему нас вопросу, мы сосредоточимся не на его отрицательной стороне — невозможности выполнения тех или иных построений, а придадим ему положительный характер: как могут быть полностью охарактеризованы задачи на построение, допускающие решение? После того как ответ на этот вопрос будет найден, не составит труда установить, что рассматриваемые нами проблемы не входят в эту категорию.

В возрасте 17 лет Гаусс исследовал возможность построения правильных «p-угольников», где p — простое число. В то время были известны построения только для случаев p = 3 и p = 5. Гаусс установил, что построения возможны в том и только том случае, если p есть простое

«число Ферма»:

p = 22n + 1.

Первые числа Ферма суть 3, 5, 17, 257, 65 537 (см. стр. 44). Это открытие произвело на Гаусса такое впечатление, что он сразу отказался от филологической карьеры и решил посвятить свою жизнь математике и ее приложениям. Он и позднее смотрел на это первое из своих открытий с особенной гордостью. После смерти Гаусса в Гёттингене была воздвигнута его бронзовая статуя, с пьедесталом в форме правильного 17-угольника. Трудно придумать более достойную почесть.

Когда речь идет о геометрических построениях, никак не следует упускать из виду, что проблема заключается не в практическом вычерчивании фигур с известной степенью аккуратности, а в том, может ли построение быть выполнено теоретически, предполагая, что наши инструменты дают абсолютную точность. Гаусс доказал именно принципиальную возможность рассмотренных им построений. Его теория не касается того, как выполнить построение на самом деле, какие следует использовать приемы, чтобы упростить процедуру или даже уменьшить число необходимых конструктивных операций. Все это — вопросы не столь высокого теоретического значения. С практической точки зрения, такие построения не дают столь удовлетворительного результата, какой может быть достигнут посредством хорошего транспортира. Вероятно, именно непониманием теоретического характера вопроса о геометрических построениях, с одной стороны, а с другой — упорным нежеланием считаться с прекрасно установленными научными фактами нужно объяснять то обстоятельство, что еще продолжают существовать нескончае-

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]