Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика шпоры заочники.docx
Скачиваний:
68
Добавлен:
18.02.2016
Размер:
1.05 Mб
Скачать

Параболический цилиндр

        Уравнение гиперболического цилиндра имеет вид y2 = 2 p x.

22 Вопрос Эллипсоид.

(7)

При эллипсоид (7) обращается в сферу радиусас центром в начале координат, т. е. геометрическое место точек, отстоящих от начала на расстоянии.

Величины называются полуосями эллипсоида.

Если в уравнении (7) заменить (одновременно или порознь) на,на,на, то оно не изменится, — это показывает, что эллипсоид (7) есть поверхность, симметричная относительно координатных плоскостей,,и начала координат. Поэтому достаточно изучить уравнение (7) в первом октанте (системы координат), т. е. для,,. Часть эллипсоида, находящаяся в первом октанте, определяется явным уравнением, например

,   ,,.

Для определенности будем считать, что . Эллипсоид есть ограниченная поверхность. Он находится внутри шара радиусас центром в начале координат: для координат любой точки эллипсоидаимеет место неравенство

.

Чтобы составить более точное представление об эллипсоиде, произведем сечения плоскостями, параллельными координатным плоскостям. Например, пересекая эллипсоид плоскостями , получим в сечении эллипсы

с полуосями,.

Отсюда видно, что самый большой эллипс получается в сечении эллипсоида плоскостью . Аналогичная картина будет при сечении плоскостями,.

Точки ,,лежат на эллипсоиде (7) и называются его вершинами.

Если какие-либо две полуоси равны между собой, то эллипсоид (7) будет эллипсоидом вращения, т. е. получается от вращения эллипса относительно соответствующей оси координат.

23ВОПРОС Гиперболоиды.

Однополостной гиперболоид – поверхность, определяемая в некоторой прямоугольной системе координат уравнением (1)

Двуполостной гиперболоид – поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением (2) В уравненияхa, b, с — положительные параметры, характеризующие гиперболоиды, причем a ≥ b.

Начало координат называют центром гиперболоида. Вершина – точка пересечения гиперболоида с координатными осям. Это четыре точки однополостного гиперболоида (4.48) и две точки двуполостного гиперболоида (4.49). Три отрезка координатных осей, соединяющих вершины гиперболоидов, называются осями гиперболоидов. Оси гиперболоидов, принадлежащие координатным осям , называются поперечными осями гиперболоидов, а ось, принадлежащая оси аппликат , — продольной осью гиперболоидов. Числа , равные половинам длин осей, называются полуосями гиперболоидов. Из уравнения (1) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.

Уравнение (1) наз-ся каноническим уравнением однополосного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (1) то оси Ох, Оу и Oz наз-ся его главными осями.

Установим вид поверхности (1). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы. Теперь рассм-м сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями или из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида. Если a=b,то гиперболоид может быть получен вращением гиперболы с полуосями а и с вокруг мнимой оси 2с.