Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химия222шпора варлаков_2.docx
Скачиваний:
168
Добавлен:
16.02.2016
Размер:
174.61 Кб
Скачать

43.Термодинамические величины. Внутренняя энергия и энтальпия

Термодинамическими величинами называют физические величины, применяемые при описании состояний и процессов в термодинамических системах.

Термодинамика рассматривает эти величины как некоторые макроскопические параметры и функции, присущие системе, но не связанные с её микроскопическим устройством. Вопросы микроскопического устройства изучает статистическая физика.

Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменныхдавления,энтропиии числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

44.Термодинамические величины. Энтропия и энергия Гиббса. Энтропия

Энтропия (от греч. entropía — поворот, превращение), понятие, впервые введенное в термодинамике для определения меры необратимого рассеяния энергии. Э. широко применяется и в других областях науки: встатистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки Э. имеют глубокую внутреннюю связь. Например, на основе представлений об информационной Э. можно вывести все важнейшие положения статистической физики.

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность протекания химической реакции; это термодинамический потенциалследующего вида:

Энергию Гиббса можно понимать как полную химическуюэнергиюсистемы (кристалла, жидкости и т. д.)

45.Растворы. Характеристика растворов.

Общая характеристика растворов.

Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя. Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве.

45)Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия.

По агрегатному состоянию растворы могут быть жидкими (морская вода), газообразными (воздух) или твёрдыми (многие сплавы металлов).

Размеры частиц в истинных растворах - менее 10-9 м (порядка размеров молекул).

Ненасыщенные, насыщенные и перенасыщенные растворы

Если молекулярные или ионные частицы, распределённые в жидком растворе присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 г NaCl в 100 г H2O, то при 200C растворится только 36 г соли).

Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества.

Поместив в 100 г воды при 200C меньше 36 г NaCl мы получим ненасыщенный раствор.

При нагревании смеси соли с водой до 1000C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 200C, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором. Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние.

Ненасыщенный раствор - раствор, содержащий меньше вещества, чем в насыщенном.

Перенасыщенный раствор - раствор, содержащий больше вещества, чем в насыщенном.

В гетерогенных системах растворителем является то вещество которое находится в том же агрегатном состоянии что и раствор.

Например: вода+соль=солевой раствор

В гомогенных системах растворителем является ТО вещество, которого больше.

Например: вода+спирт=спиртовой раствор.

Процессы растворения сопровождаются физическими и химическими явлениями

Физические явления:

выделение или поглощение теплоты

изменение объема

Изменение окраски

Выделение запаха

Изменение агрегатного состояния

Химические явления

Изменение концентрации

Изменение вещества

Изменение рН

Классификация растворов:

по агрегатному состоянию

По концентрации

По размеру частиц растворенного вещества.(По степени десперсности

Истинные растворы(размер частиц раствора вещества меньше 10-7.

Коллоидные растворы (золи)(размер частиц 10-5см.-10-7см.).

Растворы высоко молекулярных соединений(размер частиц вещества 10-5-10-7.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]