Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БР Зачет.docx
Скачиваний:
25
Добавлен:
11.06.2015
Размер:
320.13 Кб
Скачать

3. Основные закономерности дробления, образования бластулы

После проникновения сперматозоида в яйцо происходит ряд быстро следующих друг за другом изменений - завершение митотических делений, слияние мужского и женского пронуклеусов, сложные перемещения цитоплазматических компонентов яйца и начало дробления. У некоторых видов после оплодотворения резко повышается потребление кислорода и усиливается синтез белка. Есть данные в пользу того, что на ранних стадиях дробления синтезом белка в зиготе управляет РНК, которая синтезировалась в овоците еще до оплодотворения и, следовательно, является продуктом материнского генотипа, а не генотипа зиготы. В неоплодотворенном яйце эта РНК как бы «замаскирована» (возможно, в результате соединения с белком) и не может использоваться для трансляции, т. е. в качестве матрицы для синтеза пептидных цепей. Неоплодотворенное яйцо обычно содержит лишь одиночные рибосомы, а полирибосомы появляются только после оплодотворения. Таким образом, одно из последствий оплодотворения состоит, по-видимому, в «демаскировании» материнской РНК, которая теперь может быть использована в синтезе белков. Лишь позднее, примерно на стадии гаструляции, начинается транскрипция генома зиготы с образованием «эмбриональной» информационной РНК, кодирующей структуру белков, которые будут участвовать в процессах гаструляции и дальнейшего развития.

Дробление изолецитальных яиц. Первая борозда дробления изолецитального яйца проходит через анимальный и вегетативный полюсы и расщепляет его на две одинаковые клетки. Вторая борозда дробления также проходит через оба полюса яйца, но под прямым углом к плоскости первого деления, так что из двух клеток образуется четыре одинаковые клетки. Третье деление происходит в горизонтальной плоскости, под прямыми углами к плоскостям двух первых делений, и из 4 клеток образуется 8 - по 4 сверху и снизу от третьей борозды дробления. В результате дальнейших делений образуются 16, 32, 64, 128 клеток и т. д., пока не получится полый клеточный шарик, называемый бластулой. Стенка бластулы, бластодерма, состоит из одного слоя клеток, окружающих центральную полость (бластоцель).

В результате впячивания внутрь (инвагинации) одного из участков бластодермы однослойная бластула превращается в двухслойное сферическое образование - гаструлу. При этом инвагинирующий участок, в конце концов, приходит в соприкосновение с противоположной стенкой, и бластоцель исчезает. Вновь образовавшаяся полость гаструлы называется первичной кишкой (архентероном); она открывается наружу бластопором в том месте, где началось впячивание бластодермы при гаструляции. Наружный слой двойной стенки гаструлы представляет собой эктодерму, из которой впоследствии образуются кожа и нервная система. Внутренний слой, выстилающий первичную кишку, состоит в основном из клеток будущей энтодермы, из которой образуются пищеварительный тракт и органы, закладывающиеся в виде его выростов, - печень, поджелудочная железа и легкие; из внутреннего слоя образуются также зачаток хорды и мезодерма, из которой развиваются остальные органы тела. По мере того как гаструла удлиняется в передне-заднем направлении, материал будущей хорды вытягивается в продольную полоску клеток, лежащую посредине дорсальной стороны внутреннего слоя. Будущая мезодерма образует две продольные полоски клеток по обе стороны от закладки хорды. Боковые, вентральный и передний участки внутреннего слоя составляют материал будущей энтодермы.

Дробление телолецитальных яиц. Телолецитальные яйца содержат большие количества желтка, поэтому процессы дробления и гаструляции здесь существенно видоизменяются. Деление клеток, происходящих из нижней части яйца лягушки, замедляется из-за присутствия инертного желтка, и бластула поэтому состоит из большого числа мелких клеток, расположенных у анимального полюса, и нескольких крупных клеток, лежащих у вегетативного полюса. В результате нижняя стенка значительно толще верхней, и бластоцель оказывается смещенным вверх.

В яйцах, богатых желтком, например в куриных, дробление захватывает только небольшой диск цитоплазмы, расположенный у анимального полюса. Вначале все плоскости деления располагаются вертикально, и все бластомеры образуют один слой клеток. Борозды дробления отделяют бластомеры друг от друга, но не от желтка. Центральные бластомеры своими нижними концами сливаются с желтком, а бластомеры, расположенные по краям диска, не отделены ни от лежащего под ними желтка, ни от примыкающей к ним наружной стороны цитоплазмы, еще не подвергшейся дроблению. По мере дальнейшего дробления от этой цитоплазмы отделяются новые клетки, что приводит к расширению диска, но эти новые бластомеры тоже не отграничены от подстилающего их нераздробленного желтка. В конце концов центральные бластомеры обособляются от желтка либо в результате клеточных делений, происходящих в горизонтальной (тангенциальной) плоскости, либо в результате образования щелей под верхними частями клеток, содержащими ядра. При делении в горизонтальной плоскости образуются два бластомера: верхний, полностью окруженный плазматической мембраной, отделяющей его как от соседних клеток, так и от желтка, и нижний, который сохраняет связь с желтком. В конце концов крайние бластомеры диска и клетки нижнего слоя, примыкающие к желтку, вновь сливаются между собой, образуя единый многоядерный синцитий - так называемый перибласт, который не участвует в формировании зародыша. Как полагают, этот синцитий расщепляет желток и делает его питательные вещества доступными для использования растущим эмбрионом.

У птиц и некоторых рептилий обособленные бластомеры, целиком окруженные плазматической мембраной, образуют два слоя: лежащий сверху эпибласт и нижний тонкий слой плоских эпителиальных клеток - гипобласт. Гипобласт отделен от эпибласта зародышевой полостью (бластоцелем), а от находящегося еще глубже желтка - субгерминальным пространством; это пространство образуется только под центральным участком бластодермы. Участок бластодермы, лежащий над субгерминальным пространством, прозрачен, а менее прозрачная область, где бластодерма непосредственно прилегает к желтку.

Дробление центролецитальных яиц. Дробление яиц этого типа, например яйца насекомого, начинается с деления ядра в центральном островке цитоплазмы. После нескольких ядерных делений, при которых цитоплазма не делится, ядра начинают перемещаться к периферии яйца; при этом каждое ядро остается окруженным небольшой частью первоначальной центральной цитоплазмы. Когда ядра подходят к поверхности яйца, окружающая их цитоплазма сливается с поверхностным слоем цитоплазмы и наружный слой яйца превращается таким образом в синцитий. Впоследствии цитоплазму разделяют борозды, идущие вглубь от поверхности. Образующие таким путем бластомеры некоторое время остаются неотделенными от массы желтка, но в конце концов обособляются от него; компоненты желтка постепенно используются для питания развивающегося эмбриона. Эту стадию можно сравнить с образованием бластулы, хотя здесь нет полости, подобной бластоцелю, бластодерма окружает массу нераздробившегося желтка, а не полость.

Синтез нуклеиновых кислот в период дробления. Во время дробления в химическом составе эмбриона не происходит качественных изменений - никаких новых веществ не появляется. Общее количество ДНК возрастает, так как число ядер быстро увеличивается, а содержание ее в расчете на одно ядро остается постоянным. В период дробления синтезируются небольшие количества информационной и транспортной РНК, тогда как рибосомная РНК до начал гаструляции совсем или почти совсем не образуется. Видимо, дробление может происходить и без синтеза новой РНК, так как яйца, обработанные актиномицином Д (тормозящим ДНК-зависимый синтез РНК), продолжают дробиться нормально. Но если обработать оплодотворенные яйца пиромицином, который тормозит РНК-зависимый синтез белка, то дробление прекратится или будет сильно нарушено. Это говорит о том, что синтез белков необходим для нормального дробления.

Очень важно выяснить, остаются ли дочерние ядра, образующиеся в процессе дробления яйца, совершенно равноценными по своим генетическим потенциям или же они как-то дифференцируются. Имеется множество данных, говорящих о том, что никакой дифференцировки в отношении генетических потенций при дроблении не происходит. Изолированные бластомеры, взятые на стадии 4 или 8 бластомеров, развиваются в полного эмбриона со всеми его обычными частями, но только меньшей величины. Лимитирующим фактором в таких опытах оказывается не генетический материал ядра, а количество цитоплазмы, необходимое для нормального развития.

Это ограничение удается устранить, пересаживая ядра из бластомеров или из клеток эмбриона, достигшего более поздней стадии развития, в зрелое яйцо лягушки, из которого собственное ядро было удалено еще до начала дробления. Одну из клеток такого эмбриона отделяют от соседних клеток, всасывая ее микропипеткой; при этом плазматическая мембрана клетки разрывается, так что в пипетке оказывается ядро с остатками цитоплазмы; этот материал вводят глубоко в цитоплазму яйца, из которого предварительно удалили ядро, после чего клетку осторожно извлекают. Оперированные яйца начинают дробиться, и некоторые из них развиваются в нормальных головастиков, претерпевающих потом метаморфоз.

Яйца, взятые из поздней бластулы или ранней гаструлы, в которой уже 16 000 клеток, могут после пересадки в нераздробившееся яйцо обеспечить нормальное развитие эмбриона. Даже из яиц, которым пересадили ядра, взятые на более поздних стадиях, например из нервной пластинки или из ресничных клеток пищеварительного тракта плавающего головастика, иногда развиваются нормальные зародыши. Яйца развивались и в том случае, если в них пересаживали ядра из злокачественных (раковых) клеток, но ядра из нормальных клеток взрослого животного оказались неспособны к этому. По-видимому, хромосомы ядер, взятых на поздних стадиях эмбрионального развития или от взрослого организма, не могут удваиваться достаточно быстро с тем, чтобы не отставать от деления цитоплазмы на ранних стадиях зародышевого развития. Удвоение хромосом происходит очень медленно, дочерние клетки не получают полных наборов хромосом, и это ведет к нарушению нормального развития.

Контактные взаимодействия гамет

В результате запуска процесса экзоцитоза, акросомная мембрана сливается с цитоплазматической мембраной спермия и содержимое акросомого пузырька (прежде всего литические ферменты) выделяется в окружающую среду. Помимо этого активируется Na+/H+ обменник, что приводит к снижению внутриклеточной концентрации протонов. В результате повышения внутриклеточного pH наблюдается усиление полимеризации глобулярного актина и формирование актиновых филаментов, т.е. образование акросомного выроста. Помимо этого, высокий уровень pHi активирует динеиновую АТФ-азу в шейке спермия, что приводит к увеличению подвижности спермия. Однако удлинение акросомального выроста связано не только с полимеризацией актина. Приток внутрь клетки ионов кальция, натрия и хлора повышает количество осмотически активных молекул в головке спермия, что приводит к притоку в него воды. Вызванное этим резкое повышение гидростатического давления, вероятно, также способствует удлинению акросомального выроста.

Второй этап контактного взаимодействия гамет связан с узнаванием спермия и яйца. На поверхности формирующегося акросомного выроста располагается белок (биндин), ответственный за видоспецифичное узнавание у морских ежей. На желточной оболочке яйца находится гликопротеиновый комплекс, способный образовывать связи с биндином. Таким образом, узнавание гамет у морского ежа происходит на двух уровнях: активации акросомной реакции и прикрепления спермия к желточной оболочке.

Контактные взаимодействия гамет у млекопитающих имеют ряд особенностей, связанных с наличием у них внутреннего оплодотворения. При этом половые пути самки принимают активное участие в процессе оплодотворения. Спермии млекопитающих сразу после эякуляции не способны к акросомной реакции, для этого они должны какое то время находиться в половых путях самки. Так, лизин, содержащийся в сперматозоидах всех млекопитающих и разрушающий прозрачную оболочку (т.н. акролизин), активируется только под действием гликопротеина из половых путей самки. Условия, требующиеся для капацитации (приобретение спермием оплодотворяющей способности) варьируют в зависимости от вида.

Акросомная реакция — экзоцитоз содержимого акросомы для локального разрушения желточной оболочки яйцеклетки (например, блестящей оболочки у млекопитающих и человека) и преодоления сперматозоидом этого барьера.

Акросома образуется в ходе сперматогенеза и может рассматриваться как видоизмененная лизосома. Акросома расположена в головке сперматозоида, спереди от ядра и тотчас под плазматической мембраной. Спереди мембрана акросомы (наружная) соприкасается с клеточной мембраной сперматозоида, а сзади (внутренняя мембрана) — с ядерной мембраной.

Акросомная реакция — разновидность экзоцитоза. При акросомной реакции наружная мембрана акросомы и клеточная мембрана сливаются и формируют мелкие пузырьки, отделяющиеся от головки сперматозоида. При этом из акросомы освобождаются гиалуронидазы, протеазы (в том числе акрозин), гликозидазы, липазы, нейраминидаза и фосфатазы. Ферменты расщепляют молекулы блестящей оболочки, что позволяет сперматозоиду преодолеть этот барьер.

Кортикальная реакция яйца (от лат. cortex — кора, скорлупа), изменение кортикального (поверхностного) слоя яйца в ответ на активирующее воздействие. Распространяется волнообразно во все стороны от места контакта спермия с клеточной мембраной яйца или от места приложения искусственного активирующего воздействия (например, укола иглой). Видимым проявлениям К. р. предшествует латентный (скрытый) период, в течение которого по кортикальному слою яйца распространяется волна возбуждения (импульс активации яйца). Затем у большинства животных, в яйцах которых имеются кортикальные тельца, наступает видимая фаза К. р.: содержимое этих телец выделяется из яйца и оводняется, что приводит к отделению яйцевой оболочки от поверхности ооплазмы и образованию т. н, перивителлинового пространства (рис.). К. р. охватывает всю поверхность яйца у морских ежей за 10—90 сек, у рыб за 2—5 мин (в зависимости от температуры). К. р. играет важную роль в защите яйца от проникновения в него сверхчисленных спермиев (спермии агглютинируют при контакте с перивителлиновой жидкостью). Воздействия, тормозящие К. р., приводят к полиспермному оплодотворению. В результате К. р. и выделения из яйца веществ, локализованных в более глубоких слоях ооплазмы, изменяются свойства яйцевых оболочек и вокруг оплодотворённого яйца создаётся среда, благоприятная для его развития.

Партеногенез — так называемое «девственное размножение», одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются во взрослый организм без оплодотворения. Хотя партеногенетическое размножение не предусматривает слияния мужских и женских гамет, партеногенез все равно считается половым размножением, так как организм развивается из половой клетки. Считается, что партеногенез возник в процессе эволюции организмов у раздельнополых форм.

В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. Такой способ размножения используется некоторыми животными (хотя чаще к нему прибегают относительно примитивные организмы). В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых — самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расы являются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. Партеногенез следует относить к половому размножению и следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т. п.).

Существует несколько классификаций партеногенетического размножения.

По способу размножения

Естественный — нормальный способ размножения некоторых организмов в природе.

Искусственный — вызывается экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

По полноте протекания

Рудиментарный (зачаточный) — неоплодотворённые яйцеклетки начинают деление, однако зародышевое развитие прекращается на ранних стадиях. Вместе с тем в некоторых случаях возможно и продолжение развития до конечных стадий (акцидентальный или случайный партеногенез).

Полный — развитие яйцеклетки приводит к формированию взрослой особи. Эта разновидность партеногенеза наблюдается во всех типах беспозвоночных и у некоторых позвоночных.

По наличию мейоза в цикле развития

Амейотический — развивающиеся яйцеклетки не проделывают мейоза и остаются диплоидными. Такой партеногенез (например, у дафний) является разновидностью клонального размножения.

Мейотический — яйцеклетки проделывают мейоз (при этом они становятся гаплоидными). Новый организм развивается из гаплоидной яйцеклетки (самцы перепончатокрылых насекомых и коловраток), или яйцеклетка тем или иным способом восстанавливает диплоидность (например, путём эндомитоза или слияния с полярным тельцем)

По наличию других форм размножения в цикле развития

Облигатный — когда он является единственным способом размножения

Циклический — партеногенез закономерно чередуется с другими способами разножения в жизненном цикле (напрмер, у дафний и коловраток).

Факультативный — встречающийся в виде исключения или запасного способа размножения у форм, в норме двуполых.

В зависимости от пола организма

Гиногенез — партеногенез самок

Андрогенез — партеногенез самцов

Гиногенез — частный случай партеногенеза, особая форма полового размножения, при которой после проникновения спермия в яйцеклетку их ядра не сливаются, и в последующем развитии участвует только ядро яйцеклетки, либо не происходит оплодотворения. При этом нет объединения наследственного материала родителей посредством слияния ядер их половых клеток.

Роль сперматозоида ограничивается активацией осеменённого яйца к развитию. В природе гиногенез встречается крайне редко. Известен у нескольких видов рыб (голомянка, серебряный карась и др.), земноводных, круглых червей и растения семейства амариллисовых (Atamosco mexicana).

В лабораторных условиях гиногенез может быть осуществлен при использовании нежизнеспособной спермы.

Устаревший синоним гиногенеза — мероспермия.

Андрогене?з — развитие яйцеклетки с мужским ядром, привнесённым в неё спермием в процессе оплодотворения.

Андрогенез наблюдается у отдельных видов животных (шелкопряд) и растений (табак, кукуруза) в тех случаях, когда материнское ядро погибает до оплодотворения, которое при этом является ложным, то есть женское и мужское ядра не сливаются (Псевдогамия) и в дроблении участвует только мужское ядро.

Андрогенез — особый случай девственного развития, или партеногенеза; иногда его называют «мужской партеногенез».

Андрогенез можно вызвать искусственно; при этом собственное ядро яйцеклетки или удаляется совсем (микрохирургически, центрифугированием, встряхиванием, вызывающими отрыв ядросодержащих фрагментов, и т. п.), или же повреждается специфическими ядерными ядами (трипофлавином), ионизирующими излучениями, сильным нагревом и пр. и в дальнейшем дегенерирует. Ставились опыты получения андрогенетического потомства от сильно различающихся родителей (например, при отдалённых скрещиваниях) с целью решить вопрос, какой элемент клетки — цитоплазма (полученная от матери) или ядро (полученное от отца) — контролирует развитие наследственных особенностей андрогенетической особи. Почти во всех опытах получали лишь начальные стадии развития андрогенных зигот. Такие зародыши жизнеспособны при восстановлении диплоидного набора хромосом (см. Плоидность), что возможно, когда в яйцеклетку проникает одновременно несколько сперматозоидов и происходит слияние двух отцовских ядер. Случаи, когда в развитии яйцеклетки с мужским ядром участвует только часть цитоплазмы яйца, чаще обозначают термином мерогония (от др.-греч. ????? — часть и ????? — потомство). Половозрелые животные (всегда самцы) получены только у тутового шелкопряда и наездника Habrobracon juglandis. При этом Б. Л. Астаурову и В. П. Остряковой удалось на животном впервые осуществить (1956) при скрещивании двух видов шелкопряда полный межвидовой андрогенез. Несколько случаев полного андрогенеза наблюдалось у растений при отдалённых скрещиваниях разных видов табака, скерды и кукурузы. Во всех случаях полного андрогенеза как растений, так и животных андрогенные потомки оказались сходными с отцовским видом, что указывает на ведущее значение клеточного ядра в наследственности. Т.о., с помощью андрогенеза удаётся выяснить ряд вопросов, связанных с ядерно-плазменными отношениями, оценить роль цитоплазмы и ядра в передаче видовых признаков. Андрогенез используют также в целях управления полом при необходимости получения только мужского потомства (например, при разведении шелкопряда).

Дистантные взаимодействия гамет

В ходе эволюции выработалось, соответственно, два механизма для решения поставленных задач. Это видоспецифичное привлечение спермиев и видоспецифичная их активация. Уже в ходе ранних исследований процесса оплодотворения возникло представление о гамонах – веществах, обеспечивающих активацию или блокирование отдельных его этапов. Яйцеклетка способна продуцировать гиногамоны, а сперматозоид андрогомогы. Полагали, что гиногамон I это низкомолекулярное вещество небелковой природы, которое активирует движение сперматозоидов (повышая, тем самым, вероятность их встречи с яйцом), преодолевая действие андрогомона I, подавляющего подвижность спермия.

Гиногамон II, часто именуемый фертилизином, – гликопротеин, расположенный в периферической области яйца и вызывающий связывание его со сперматозоидами при взаимодействии с комплементарным ему андрогомоном II (антифертилизином), встроенным в поверхностную оболочку спермия, способным разжижать студенистое вещество и растворять оболочку яйца, из-за чего его зачастую отождествляют с гиалуронидазой. Гипотезы оплодотворения, основанные на идее о взаимодействии фертилизина с комплементарным ему антифертилизином сыграли свою положительную роль, поскольку позволили обнаружить существование целого семейства специфических молекул на поверхности взаимодействующих гамет.

Видоспецифичное привлечение спермиев доказано для многих животных: кишечнополостных, моллюсков, иглокожих и первичнохордовых. Оно представляет собой род хемотаксиса – движения по градиенту концентрации какого-либо вещества. В 80-х гг. XX века удалось идентифицировать два видоспецифичных аттрактанта сперматозоидов морских ежей – сперакт и резакт. Оба вещества, выделенные из студенистой оболочки яиц, относятся к пептидам и содержат 10 и 14 аминокислотных остатков, соответственно. При взаимодействии со спермиями они стимулируют их метаболизм и увеличивают подвижность мужских гамет. Как следует из названия, данная стадия начинается с момента контакта сперматозоида с третичной оболочкой яйцеклетки. Первым ее этапом является акросомная реакция. У морского ежа ее инициируют сульфатированные полисахариды студенистой оболочки – вызывают поступление Ca2+ в головку спермия.

Дробле?ние — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления. Яйцо разделяется на все более мелкие клетки — бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце.

Биологическое значение дробления

Переход к многоклеточности

Увеличение ядерно-цитоплазматического отношения

Характерные черты дробления

Дробление как особый этап онтогенеза животных имеет характерные черты, которые свойственны большинству животных, но могут отсутствовать у некоторых групп.

Бластомеры делятся очень быстро (у дрозофилы — раз в 20 минут) и более или менее синхронно.

Интерфаза сокращена до S-периода; в связи с этим транскрипция собственных генов зародыша полностью подавлена, транскрибируются только запасённые в яйцеклетке материнские мРНК.

Между делениями нет периода роста, так что общая масса зародыша не растёт.

По всем этим характеристикам дробление млекопитающих резко отклоняется от типичного. Бластомеры делятся у них медленно, синхронность нарушается уже после 1—2 делений, в это же время активируется собственный геном зародыша.

Классификация типов дробления

На основе ряда существенных характеристик (степень детерминированности, полнота, равномерность и симметрия деления) выделяют ряд типов дробления. Типы дробления во многом определяются распределением веществ (в том числе, желтка) по цитоплазме яйца и характером межклеточных контактов, которые устанавливаются между бластомерами.

Дробление может быть: детерминированным и регулятивным; полным (голобластическим) или неполным (меробластическим); равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две — три размерные группы, обычно называемые макро- и микромерами); наконец, по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов.

По степени детерминированности

Детерминированное

Недетерминированное (регулятивное)

По степени полноты делений

Голобластическое дробление

Плоскости дробления разделяют яйцо полностью. Выделяют полное равномерное дробление, при котором бластомеры не различаются по размерам (такой тип дробления характерен для гомолецитальных и алецитальных яиц), и полное неравномерное дробление, при котором бластомеры могут существенно различаться по размерам. Такой тип дробления характерен для умеренно телолецитальных яиц.

Меробластическое дробление

Дискоидальное

ограничено относительно небольшим участком у анимального полюса,

плоскости дробления не проходят через всё яйцо и не захватывают желток.

Такой тип дробления типичен для телолецитальных яиц, богатых желтком (птицы, рептилии). Такое дробление называют также дискоидальным, так как в результате дробления на анимальном полюсе образуется небольшой диск клеток (бластодиск).

Поверхностное

ядро зиготы делится в центральном островке цитоплазмы,

получающиеся ядра перемещаются на поверхность яйца, образуя поверхностный слой ядер (синцитиальную бластодерму) вокруг лежащего в центре желтка. Затем ядра разделяются мембранами, и бластодерма становится клеточной.

Такой тип дробления наблюдается у членистоногих.

По типу симметрии дробящегося яйца

Радиальное

Ось яйца является осью радиальной симметрии. Типично для ланцетника, осетровых, амфибий, иглокожих, круглоротых.

Хотя дробление амфибий часто описывается как радиальное, на самом деле еще до дробления, сразу же после оплодотворения, их яйцо приобретает билатеральную симметрию - на будущей спинной стороне зародыша образуется "серый серп" (его материал позднее попадает в клетки шпемановского организатора, или дорзальной губы бластопора). Билатеральную симметрию имеет и бластула амфибий.

Спиральное

В анафазе бластомеры разворачиваются. Отличается лево-правой дисимметрией (энантиоморфизм) уже на стадии четырёх (иногда двух) бластомеров. Типично для некоторых моллюсков, кольчатых и ресничных червей.

Билатеральное

Имеется 1 плоскость симметрии. Типично для аскариды.

Анархическое

Бластомеры слабо связаны между собой, сначала образуют цепочки или бесформенную массу; часто у одного вида встречаются разные варианты расположения бластомеров. Типично для кишечнополостных.

Бластуляция, заключительная часть периода дробления яйца многоклеточных животных, в течение которой происходит образование бластулы. Во время Б. поверхностные клетки зародыша приобретают вид эпителиального пласта, возникает центральная полость (бластоцель), дробление бластомеров становится асинхронным, возрастает продолжительность митотического цикла, падает величина митотического индекса и увеличивается длительность интерфазы . В интерфазных ядрах клеток во время Б. появляются ядрышки, начинается синтез информационной рибонуклеиновой кислоты (и-РНК), что обеспечивает переход к гаструляции.

Строение бластулы

Дробление приводит к образованию шарообразного зародыша – бластулы. Если образуется сплошной шар без полости внутри, то такой зародыш называют морулой. Образование бластулы или морулы зависит от свойств цитоплазмы. Бластула образуется при достаточной вязкости цитоплазмы, морула – при слабой вязкости. При достаточной вязкости цитоплазмы бластомеры сохраняют округлую форму и только в местах соприкосновения слегка сплющиваются. Вследствие этого между ними появляется щель, которая по мере дробления увеличивается, заполняется жидкостью и превращается в бластоцель. При слабой вязкости цитоплазмы бластомеры не округляются и располагаются тесно друг возле друга, щели нет и полость не образуется. Бластулы различны по своему строению и зависят от типа дробления.

Типы бластул

Различают пять типов бластул: целобластулу, амфибластулу, стерробластулу, дискобластулу и перибластулу. Целобластула образуется при полном равномерном дроблении из яйцеклеток гомолецитального типа (ланцетник). Бластодерма целобластулы состоит из одного ряда более или менее одинаковых бластомеров, внутри находится крупная полость – бластоцель.

Бластодерма амфибластулы состоит из нескольких рядов клеток. Бластодерма в анимальной части тоньше, чем в вегетативной. Бластоцель меньших размеров, чем у ланцетника, и смещена к анимальному полюсу. Такого типа бластула образуется при полном неравномерном дроблении и характерна для круглоротых и земноводных.

Стерробластула состоит из одного ряда крупных бластомеров, которые глубоко заходят в полость бластулы, бластоцель в связи с этим или очень малая, или отсутствует (некоторые членистоногие).

Дискобластула образуется при неполном дискоидальном дроблении. Бластоцель в виде узкой щели находится между зародышевым диском и желтком. Крыша бластулы представлена бластодермой, а дно желтком. Такая бластула характерна для костистых рыб, пресмыкающихся и птиц. Бластодерма перибластулы состоит из одного ряда клеток, которые окружают желток. Полость в ней отсутствует. Перибластула наблюдается у некоторых насекомых.

Гаструляция — сложный процесс морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма и энтодерма) — источники зачатков тканей и органов. Второй после дробления этап онтогенеза. При гаструляции происходит перемещение клеточных масс с образованием из бластулы двухслойного или трёхслойного зародыша — гаструлы.

Тип бластулы определяет способ гаструляции.

Зародыш на этой стадии состоит из явно разделенных пластов клеток - зародышевых листков: наружного (эктодерма) и внутреннего (энтодерма).

У многоклеточных животных, кроме кишечнополостных, параллельно с гаструляцией или, как у ланцетника, вслед за ней возникает и третий зародышевый листок - мезодерма, который представляет собой совокупность клеточных элементов, расположенных между эктодермой и эндодермой. Вследствие появления мезодермы зародыш становится трехслойным.

На этой стадии начинается использование генетической информации клеток зародыша, появляются первые признаки дифференцировки.

Дифференцировка (дифференцирование) - процесс возникновения и нарастания структурных и функциональных различий между отдельными клетками и частями зародыша.

Образуются несколько сотен типов клеток специфичного строения, отличающихся друг от друга. Синтез определенных белков, свойственных только данному типу клеток.Биохимическая специализация клеток обеспечивается дифференциальной активностью генов.

Из эктодермы образуется нервная система, органы чувств, эпителий кожи, эмаль зубов; из энтодермы - эпителий средней кишки, пищеварительные железы, эпителий жабр и легких; из мезодермы - мышечная ткань, соединительная ткань, кровеносная система, почки, половые железы и др.

У разных типов животных одни и те же зародышевые листки дают начало одним и тем же органам и тканям.

Способы гаструляции

Инвагинация — происходит путем впячивания стенки бластулы в бластоцель; характерна для большинства групп животных.

Деляминация (характерна для кишечнополостных) — клетки, находящиеся снаружи, преобразуются в эпителиальный пласт эктодермы, а из оставшихся клеток формируется энтодерма. Обычно деляминация сопровождается делениями клеток бластулы, плоскость которых проходит «по касательной» к поверхности.

Иммиграция — миграция отдельных клеток стенки бластулы внутрь бластоцеля.

Униполярная — на одном участке стенки бластулы, обычно на вегетативном полюсе;

Мультиполярная — на нескольких участках стенки бластулы.

Эпиболия — обрастание одних клеток быстро делящимися другими клетками или обрастание клетками внутренней массы желтка (при неполном дроблении).

Инволюция — вворачивание внутрь зародыша увеличивающегося в размерах наружного пласта клеток, который распространяется по внутренней поверхности остающихся снаружи клеток.

Бластопор (от др.-греч. ??????? — росток + др.-греч. ????? — проход, отверстие; Первичный рот) — отверстие, посредством которого полость первичной кишки зародыша животного на стадии гаструлы сообщается с окружающей средой. У большинства животных бластопор закладывается на вегетативном полюсе; у части гидроидных и гребневиков, возможно, на анимальном (у гидроидных ранние зародыши временно утрачивают полярность, а у гребневиков бластомеры совершают сложные движения, поэтому установить соответствие между полюсами яйца и зародыша затруднительно).

Бластопор обычно смещен на будущую брюшную сторону зародыша. Только у хордовых бластопор смещен на спинную сторону, так как морфологически брюшная сторона стала у хордовых функционально спинной [1]. В процессе развития у первичноротых животных бластопор обычно превращается в рот или образует рот и анальное отверстие. В чистом виде амфистомия (замыкание бластопора посередине с образованием из него рта и ануса) встречается у примитивных полихет, онихофор и нематод. У большинства кольчатых червей, моллюсков и форонид щелевидный бластопор замыкается сзади наперед, из оставшегося переднего отверстия формируется рот, а анус образуется у заднего края замкнувшегося бластопора. У плеченогих и низших хордовых бластопор замыкается спереди назад, при этом обычно и рот, и анус формируются заново. Бластопор целиком превращается в рот у немертин и плоских червей. Целиком превращается в анус бластопор у волосатиков, некоторых ракообразных и моллюсков, а также у иглокожих. Таким образом, "вторичноротость" свойственна некоторым из первичноротых животных (например, волосатикам, у которых на месте бластопора формируется анус). У вторичноротых на месте бластопора иногда образуется нервнокишечный канал, временно соединяющий пищеварительную полость с полостью нервной трубки. У амфибий сначала образуется в виде дугообразного углубления (спинная губа бластопора), которое затем замыкается в кольцо, и закрыт "желточной пробкой" — группой заполненных желтком клеток вегетативного полушария бластулы. У высших позвоночных имеет вид длинного узкого углубления. У человека бластопор имеет очень малые размеры.

По мнению В.В. Малахова [2], предки билатерий имели щелевидный бластопор, располагавшийся на брюшной ползательной поверхности и унаследованный от общих предков билатерий и книдарий, уже обладавших двусторонней симметрией. Брюшную (бластопоральную) поверхность тела билатерий Малахов считает гомологичной ротовой (оральной) поверхности предковой формы.

Когда пупочный стебелек еще достаточно широк, из вентральной стенки задней кишки возникает слепой энтодермальный вырост, покрытый висцеральным листком несегментированной мезодермы – аллантоис. Постепенно разрастаясь, он занимает пространство между амнионом, желточным мешком и серозной оболочкой, т. е. экзоцелома. Аллантоис представляет собой вместилище для конечных продуктов азотистого обмена – мочевины и мочевой кислоты, а благодаря развитой сосудистой сети он вместе с серозной оболочкой участвует в газообмене. Серозная оболочка граничит с подскорлуповой и скорлуповой оболочками, богатыми порами, через которые поступает кислород в сосуды серозной оболочки и из них в пупочные сосуды идущие к телу зародыша. Аллантоис с разветвлениями пупочных сосудов сильно разрастается по всей поверхности серозной оболочки, в результате увеличивается площадь контакта с кислородом атмосферы, поступающего через поры скорлупы, а следовательно и скорость газаобмена. Серозная оболочка в ходе эмбрионального развития более тесно прилегает к подскорлуповой пленке на тупом конце яйца, где имеется воздушная камера. В результате срастания стенок аллантоиса и серозной оболочки (иногда также именуемой хорионом) возникает обильно пронизанная кровеносными сосудами оболочка – хориоаллантоис. При вылуплении наружная, большая, часть аллантоиса отбрасывается, а внутренняя сохраняется в виде мочевого пузыря. Белковая оболочка яйца отдает в ходе эмбриогенеза значительную часть содержащейся в ней воды желтку. В результате желток становится более жидким, а белок, напротив, сильно загустевает, уменьшается в объеме и оттесняется к острому концу яйца. Здесь он охватывается складками серозы, подрастающей сюда в процессе обрастания желтка. Эта складка серозы вместе с внутренней стенкой алантоиса формируют белковый мешок. __ У ящериц и змей нет белковой оболочки. Яйцеклетка и желток у них контактируют непосредственно с подскорлуповой оболочкой. В процессе обособления зародыша он не поднимается над поверхностью бластодиска, а, наоборот, погружается в желток. Хорион и амнион вначале состоят только из эктодермальных пластов, а мезодерма врастает между ними позднее. __ Стенки белкового мешка образуют выросты (ворсинки) в которые врастают сосуды аллантоиса. Ферментативно расщепляя и всасывая белковую массу, сероза передает ее сосудам аллантоиса, а те транспортируют питательные вещества белковой оболочки с током крови к зародышу. __ Начиная с 9-х суток инкубации куриный зародыш начинает заглатывать амниотическую жидкость, что совпадает с началом специфической тканевой дифференцировки кишечного эпителия. С 14-х по 16-е сутки белок перемещается через серозо-амниотический канал в амниотическую полость и примешивается к амниотической жикости, благодаря чему вновь разжижается. К концу 18-х суток инкубации зародыш полностью завершает заглатывание белка и амниотической жидкости, смешавшихся друг с другом. Запас желтка сохраняется в желточном мешке значительно дольше. __ К 20–21 дню эмбриональное развитие цыпленка заканчивается. К этому времени белок и содержимое желточного мешка в основном используются. Остаток содержимого желточного мешка втягивается в брюшную полость и в течение месяца после вылупливания полностью исчезает. Провизорные органы, в частности аллантоис, редуцируются, цыпленок начинает дышать легкими за счет воздуха, находящегося в воздушной камере. С первым вдохом включается малый круг кровообращения, цыпленок разбивает скорлупу и освобождается от яйцевых оболочек.

Зародышевые оболочки, у некоторых беспозвоночных животных, акуловых рыб, всех высших позвоночных животных и человека обеспечивают жизнедеятельность зародыша и его защиту от повреждений. В отличие от яйцевых оболочек, З. о. образуются не при созревании яйцеклетки, а во время зародышевого развития из клеток зародыша. К З. о. относятся амнион (водная оболочка), хорион и аллантоис. Амнион формируется боковыми складками внезародышевой эктодермы и наружного листка боковых пластинок, которые приподнимаются и смыкаются над зародышем (рис.), либо путём образования полости среди зародышевых клеток, постепенно преобразующихся в окружающую зародыш оболочку. Амнион заполнен жидкостью и предохраняет зародыш от высыхания, защищает его от соприкосновения с др. оболочками, иногда очень плотными (например, скорлупа яйца), и от механических повреждений. Наружная стенка амниотических складок образует хорион. У млекопитающих и человека он непосредственно контактирует со стенкой матки. У пресмыкающихся и птиц эту З. о. обычно называют серозой. У млекопитающих и человека хорион обеспечивает обмен веществ между организмом матери и плода и закладывается на ранней стадии развития, когда зародыш ещё представлен пузырьком (т. н. бластоцистой), состоящим из скопления мелких клеток — т. н. эмбриобласта, окруженного слоем более крупных клеток — трофобластом. Хорион возникает из клеток трофобласта, которые затем подстилаются клетками внезародышевой мезодермы. Он имеет характерные ворсинки, которые врастают в ткани матки и образуют плодную часть плаценты. Ворсинки снабжены сосудами, образующимися в связи с развитием как желточного мешка, так и аллантоиса. Последний закладывается как вырост заднего отдела кишечной трубки зародыша. У пресмыкающихся и птиц он по форме напоминает мешок, сильно разрастается и покрывает снаружи амнион и желточный мешок. Снабженный большим количеством кровеносных сосудов, аллантоис является эмбриональным органом дыхания. В полости аллантоиса собираются продукты обмена веществ зародыша, в основном моча. У млекопитающих и человека аллантоис невелик, в его мезенхиме образуются сосуды пуповины, связывающие зародыш с плацентой. На более поздних стадиях развития из внутризародышевой части аллантоиса образуется мочевой пузырь (у млекопитающих и человека) и формируется клоака (у птиц и пресмыкающихся).

У зародышей высших позвоночных обычно имеются 4 типа внезародышевых оболочек. Амнион — тонкая оболочка эктодермального происхождения, которая окружает весь зародыш, заключая его в наполненный жидкостью мешок. Амниотическая оболочка функционально специализирована для секреции и поглощения амниотической жидкости, омывающей за­родыш. Эта структура характерна для рептилий, птиц и млекопитающих, что всех объединяют под названием Амниот. Рыбы и амфибии, не имеющие амниона, носят название Анамний.

Эндодермальный Желточный мешок У зародыши рептилий и птиц тесно связан с пита­нием. Эндодерма желточного мешка служит источником первичных половых клеток. Мезодермальные клетки, выстилаю­щие эндодерму желточного мешка, служат родоначальниками форменных элементов крови. Желточный мешок начинает формироваться в процессе формирования первичной кишки. Образуется подголовное и подхвостовое углубление, и боковые углубления. Желточный мешок формируется за счет энтодермы. Вместе с ней в формировании желточного мешка принимает участие мезодерма. В желточном мешке формируются из англиогенных клеток кровяные островки. За счет клеток энтодермы происходит у птиц, рыб, рептилий формируются клетки липофаги, которые мигрируют в желток и расщепляют его. Наружные клетки формируют капилляры (эндотелий сосудов), а внутренние превращаются в клетки крови при дифференцировке кровяных островков.

Аллантоис (Внезародышевая оболочка) представляет собой выстланное эндодермой выпячи­вание, образующееся на вентральной поверхности задней кишки. Он представлен энтодермальными клетками, но в него мигрируют клетки мезодермы, фомирующие сосуды. У плацентарных формируют структуру хориоаллантоис, обеспечивающая газообмен и питание. В дальнейшем аллантоис принимает участие при формировании плаценты. Основные функции аллантоиса — служить вместилищем для накопления или удаления мочевины и мочевой кислоты и осу­ществлять газообмен между зародышем и окружающей его сре­дой. У рептилий и птиц аллантоис имеет вид большого мешка. У млекопитающих роль аллантоиса и его размеры варьируют в зависимости от обмена веществ.

Самая наружная внезародышевая оболочка, примыкающая к скорлупе или материнским тканям и поэтому служащая местом обмена между зародышем и окружающей его средой, называется Хорионом. У видов, откладывающих яйца, основная функция хориона — осуществление дыхательного газообмена. У млекопитающих хорион участвует в дыхании и питании, выделении, фильтрации и синтезе веществ. У примитивных организмов хорион – вторичная оболочка, а у продвинутых – оболочка плода. Полость между хорионом и амнионом – хорионамниотическая.

ЭМБРИОЛОГИЯ ЧЕЛОВЕКА: ВНЕЗАРОДЫШЕВЫЕ ОБОЛОЧКИ К статье ЭМБРИОЛОГИЯ ЧЕЛОВЕКА Развитие эмбриона сопровождается образованием нескольких оболочек, окружающих его и отторгаемых при рождении. Самая наружная из них - уже упоминавшийся хорион, производное трофобласта. Он соединен с эмбрионом с помощью телесного стебелька из соединительной ткани, происходящей из мезодермы. Со временем стебелек удлиняется и образует пупочный канатик (пуповину), соединяющий эмбрион с плацентой. Плацента развивается как специализированный вырост плодных оболочек. Ворсинки хориона прободают эндотелий кровеносных сосудов слизистой оболочки матки и погружаются в кровяные лакуны, заполненные кровью матери. Таким образом, кровь плода отделена от крови матери лишь тонкой наружной оболочкой хориона и стенками капилляров самого зародыша, т.е. непосредственного смешения крови матери и плода не происходит. Через плаценту диффундируют питательные вещества, кислород и продукты обмена веществ. При рождении плацента отбрасывается как послед и ее функции переходят к пищеварительной системе, легким и почкам. Внутри хориона зародыш помещается в мешке, называемом амнионом, который формируется из эмбриональной эктодермы и мезодермы. Амниотический мешок наполнен жидкостью, увлажняющей зародыш, защищающей его от толчков и удерживающей в состоянии, близком к невесомости. Другая дополнительная оболочка - аллантоис, производное энтодермы и мезодермы. Это место хранения продуктов выделения; он соединяется с хорионом в телесном стебельке и способствует дыханию эмбриона. У эмбриона существует еще одна временная структура - т.н. желточный мешок. В течении какого-то времени желточный мешок снабжает эмбрион питательными веществами путем диффузии из материнских тканей; позднее здесь формируются родоначальные (стволовые) клетки крови. Желточный мешок является первичным очагом кроветворения у эмбриона; впоследствии эта функция переходит сначала к печени, а затем к костному мозгу.

Анамнии (Anamnia) и Амниоты (Amniota): различия взрослых особей

Особенности строения взрослых амниот, отличающие их от анамний, связаны с приспособлениями к жизни на суше и в той или иной степени затрагивают все системы органов. Кожа анамний проницаема для воды и газов и покрыта слизью, выделяемой многочисленными кожными железами. Она участвует в газовом и водном обмене и удалении продуктов распада. Защитные кожные образования - чешуи, покровные кости - развиваются в соединительнотканном слое кожи.

У амниот резко сокращается количество кожных желез (кроме млекопитающих), а поверхностные слои эпидермиса ороговевают (в клетках накапливается кератогиалин ), что делает кожу мало проницаемой для воды и газов. Это исключает ее участие в дыхании и выделении, но вместе с тем предохраняет организм от иссушения. Поэтому амниоты смогли заселить и самые сухие местообитания. Защитные роговые образования кожи амниот - чешуи, когти, перья, волосы - производные эпидермиса. Роговые чешуи улучшают защиту тела от механических и химических повреждений, а у птиц и млекопитающих перьевой и волосяной покров выполняет и теплоизолирующую функцию, обеспечивая теплокровность,

Совершенствование опорно-мышечной системы значительно увеличивает подвижность амниот по сравнению с анамниями ( земноводными ). Это выражается в полном окостенении скелета, в большей дифференцировке позвоночного столба, усилении поясов конечностей и укреплении их связи с осевым скелетом, в большем развитии и дифференцировке мускулатуры.

Усиление челюстей, развитие жевательной мускулатуры и дальнейшая дифференцировка пищеварительного тракта позволили расширить спектр используемых кормов и повысить степень их усвоения. Возрастание потребления кислорода обеспечивается увеличением поврхности легких и интенсификацией дыхания благодаря образованию грудной клетки.

У пресмыкающихся, по сравнению с земноводными, усиливается разобщенность большого и малого кругов кровообращения, а у птиц и млекопитающих они полностью разделены. Число эритроцитов в единице объема крови увеличивается, а их размеры уменьшаются; поэтому возрастает общая поверхность эритроцитов и увеличивается кислородная емкость крови. Параллельно растет масса красного костного мозга - основного органа кроветворения у амниот.

Характерные для анамний мезонефрические почки функционируют только у зародышей амниот. Во второй половине эмбрионального развития формируются метанефрические, или тазовые, почки , одновременно развиваются их протоки - мочеточники. У самок амниот редуцируются мезонефрические почки и вольфовы каналы; сохраняются выполняющие функцию яйцеводов мюллеровы каналы. У самцов сохраняется лишь часть мезонефрической почки, становящейся придатком семенника; вольфовы каналы выполняют функцию семяпроводов. В метанефрической почке, по сравнению с мезонефрической, почечные канальцы (нефроны) заметно усложняются. Выделение продуктов распада идет не только путем фильтрации плазмы из капилляров клубочков в просвет боуменовых капсул, но и секрецией железистыми клетками стенок почечных канальцев. Этот фильтрат - первичная моча, проходя по почечному канальцу, существенно изменяется, так как через его стенки идет обратное всасывание воды и абсорбция ряда нужных организму веществ - солей, органических молекул и т. п. Благодаря этому метанефрическая почка амниот не только служит практически единственным органом выделения, но активно участвует в водном и солевом обмене, обеспечивая экономию воды.

У амниот возрастают относительные размеры головного мозга, особенно переднего (где резко возрастает число нервных клеток в дне мозга - в полосатых телах), и мозжечка. У пресмыкающихся и птиц в крыше переднего мозга увеличиваются скопления нервных клеток (зачатки этих скоплений обнаруживаются у земноводных), а у млекопитающих они разрастаются в кору больших полушарий - неопаллиум , где образуются новые высшие мозговые центры. Изменения в деталях строения рецепторов повышают их эффективность. Органы боковой лиции у амниот не развиваются.

Все эти преобразования обеспечивают амниотам, по сравнению с анамниями, в среднем более высокий уровень жизнедеятельности, большую устойчивость по отношению к неблагоприятным изменениям внешней среды. Усложнение высшей нервной деятельности находит свое выражение в возрастании роли индивидуального опыта, в усложнении внутривидовой организации и межвидовых взаимоотношений. Более высокий уровень жизнедеятельности сделал возможным более активные отношения с абиотическими и биотическими факторами окружающей среды и позволил амниотам заселить практически все биотопы суши. Некоторые группы пресмыкающихся, млекопитающих и птиц вторично освоили водные биотопы, успешно конкурируя в них с первичноводными позвоночными - анамниями.

Моноспермия (от моно… и сперма), оплодотворение яйцеклетки одной муж. гаметой. М.— самый обычный способ оплодотворения, вследствие к-рого яйцеклетка оказывается невосприимчивой к др. гаметам. В очень редких случаях у цветковых растений яйцеклетка может оплодотворяться двумя спермиями (диспермия).

Полиспермия -