Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Немного по МАТАНУ.doc
Скачиваний:
253
Добавлен:
29.05.2015
Размер:
1.43 Mб
Скачать

18.Эллипс, гипербола парабола. Каноническое уравнение.

Алгебраической кривой второго порядка называется кривая Г, уравнение которой в декартовой системе координат имеет вид:

Аx2 + 2Вxy + Сy2 + 2Dx + 2Еy + F = 0,

где не все коэффициенты А, В и С равны одновременно нулю.

Если кривая Г невырожденная, то для неё найдется такая декартова прямоугольная система координат, в которой уравнение этой кривой примет один из следующих трех видов (каноническое уравнение):

- эллипс,

- гипербола,

px - парабола.

Эллипс – геометрическое множество точек плоскости, сумма расстояний от которых до двух точек и, называемых фокусами, есть величина постоянная 2a, большая, чем расстояние между фокусами 2c:.

Эллипс, заданный каноническим уравнением:

симметричен относительно осей координат. Параметры а и b называются полуосями эллипса (большой и малой соответственно), точки ,,,называются его вершинами.

Если а>b, то фокусы находятся на оси ОХ на расстоянии от центра эллипса О.

Число ()

называется эксцентриситетом эллипса и является мерой его «сплюснутости» (при эллипс является окружностью, а прион вырождается в отрезок длиною).

Если а<b, то фокусы находятся на оси ОY и ,.

Гипербола – геометрическое множество точек плоскости, модуль разности расстояний от которых до двух точек и, называемых фокусами, есть величина постоянная 2a, меньшая, чем расстояние между фокусами 2c:.

Гипербола, заданная каноническим уравнением:

симметрична относительно осей координат. Она пересекает ось ОХ в точках и- вершинах гиперболы, и не пересекает оси ОY.

Параметр а называется вещественной полуосью, b – мнимой полуосью.

Число , ()

называется эксцентриситетом гиперболы.

Прямые называются асимптотами гиперболы.

Гипербола, заданная каноническим уравнением : ( или),

называется сопряжённой ( имеет те же асимптоты ). Её фокусы расположены на оси OY. Она пересекает ось ОY в точках и- вершинах гиперболы, и не пересекает оси ОX.

В этом случае параметр b называется вещественной полуосью, a – мнимой полуосью. Эксцентриситет вычисляется по формуле: , ().

Парабола – множество точек плоскости, равноудаленных от данной точки F, называемой

фокусом, и данной прямой, называемой директрисой: .

Парабола, заданная указанным каноническим уравнением, симметрична относительно оси ОХ.

Уравнение задает параболу, симметричную относительно оси ОY.

Парабола имеет фокуси директрису.

Парабола имеет фокуси директрису.

Если р>0, то в обоих случаях ветви параболы обращены в положительную сторону соответствующей оси, а если р<0 – в отрицательную сторону.

19.Каноническое и общее уравнение прямой в пространстве

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ), тогда прямая, через них проходящая, задается уравнениями:

=; (3.3)

3) точкой M 1 (x 1, y 1, z 1 ), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой.

Вектор aназывается направляющим вектором прямой.

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [ n 1, n 2 ], где n 1 (A 1, B 1, C 1 ) и n 2 (A 2, B 2, C 2 ) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1, y = y 1 ; прямая параллельна оси Oz.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]