Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_PGM.doc
Скачиваний:
678
Добавлен:
29.05.2015
Размер:
3.73 Mб
Скачать

2. Дифференциальные уравнения фильтрации

Аналитическое и численное исследование задач гидрогазодинамики связано с применением основных законов сохранения (массы, импульса и энергии) в дифференциальной форме. Ранее уже говорилось, что для подземной гидромеханики характерно изотермическое изменение параметров. Таким образом, для таких процессов можно не рассматривать уравнение энергии и ограничиться уравнениями баланса массы (неразрывности) и количества движения (импульса).

Уравнение энергии необходимо рассматривать в локальных областях призабойной зоны, где из-за значительных перепадов давления значительно влияние дроссельного эффекта, а также при применении тепловых методов повышения нефтегазоотдачи.

Для замыкания системы уравнений необходимо введение замыкающих соотношений, определяющих зависимость силы трения, пористости и ряда другиз параметров от давления и скорости фаз.

Кроме того, для получения однозначного решения, необходимо задание граничных и начальных условий.

В большинстве случаев решение задач подземной гидродинамики требует использования численных методов и только в сильно идеализированных случаях одномерного и плоского течений удаётся получить аналитическое решение.

2.1. Скорость фильтрации

При исследовании фильтрационных течений удобно отвлечься от размеров пор и их формы, допустив, что флюид движется сплошной средой, заполняя весь объём пористой среды, включая пространство, занятое скелетом породы.

Предположим, что через поверхность F пористой среды протекает объёмный расход флюида

Q=w Fп, (2.1)

где w – действительная средняя скорость жидкости; Fп – площадь пор.

Площадь пор связана с полной поверхностью через просветность (соотношение 1.2), а для сред неупорядочной структуры справедливо допущение о равенстве просветности и пористости. Следовательно,

Q=w m F. (2.2)

Величина

u= w m (2.3)

называется скоростью фильтрации и определяет переток флюида, осреднённый по площади. Так как m<1, то скорость фильтрации всегда меньше средней.

Физический смысл скорости фильтрации заключается в том, что при этом рассматривается некоторый фиктивный поток, в котором:

  • расход через любое сечение равен реальному расходу,

  • поле давлений идентично реальному потоку,

  • сила гидравлического сопротивления равна силе сопротивления реального потока.

Предполагается, что скорость фильтрации непрерывно распределена по объёму и связана со средней действительной скоростью течения равенством (2.3).

2.2. Общая система уравнений подземной гидромеханики

Для нестационарного процесса при отсутствии источников и стоков имеем:

  • уравнение неразрывности

; (2.4)

  • уравнение сохранения количества движения

. (2.5)

В уравнении (2.5):

  • в виду незначительности изменения количества движения во времени первым членом можно пренебречь;

  • разница в перетоках количества движения через границы контрольных объёмов также составляют величины второй малости по сравнению со скоростями и, следовательно, вторым членом тоже можно пренебречь;

  • силу сопротивления Fc по аналогии с трубной гидравликой или задачами обтекания можно представить в виде

.

Таким образом, уравнение (2.2) вырождается в следующее

,

то есть, получаем уравнение, линейно связывающее скорость фильтрации с градиентом давления.

Уравнение такого вида широко используется в подземной гидродинамике и носит название уравнения фильтрации в форме Дарси:

, (2.6)

где р*=р+zg, z – вертикальная координата.

Движение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным). При установившемся движении параметры потока (плотность, скорость фильтрации и так далее) в каждой точке пористой среды постоянны и не зависят от времени. Таким образом, для установившейся фильтрации и уравнение неразрывности принимает вид

. (2.7)

В вышеприведенных уравнениях:

;

;

(a) – декартовые координаты; (b) – сферические координаты; (c) – цилиндрические координаты; i, j, k – единичные векторы по осям декартовой системы координат; e , e , er, ez – по осям сферической системы; , , r и z – по осям цилиндрической системы; в сферических координатах – угол  определяет изменение меридианного угла, а угол  широтного.

Для несжимаемой жидкости (onst) уравнение (2.3) запишется в виде

. (2.8)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]