Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАТАН.doc
Скачиваний:
85
Добавлен:
22.05.2015
Размер:
1.05 Mб
Скачать

15. Несобственные интегралы по неограниченному промежутку (первого рода)

Определение несобственного интеграла по бесконечному промежутку. Пусть функция f(x) определена на полуосии интегрируема по любому отрезку [a,b], принадлежащему этой полуоси. Предел интеграла приназывается несобственным интегралом функции f(x) от a до и обозначаетсяИтак, по определению, Если этот предел существует и конечен, интегралназывается сходящимся; если предел не существует или бесконечен, интеграл называется расходящимся.

Несобственные интегралы от неограниченных функций (второго рода)

Особенность на левом конце промежутка интегрирования. Пусть функция f(x) определена на полуинтервале (a, b], интегрируема по любому отрезку , и имеет бесконечный предел при Несобственным интегралом от f(x) по отрезку [a, b] называется пределЕсли этот предел конечен, говорят, что интеграл сходится; если предел не существует или бесконечен, говорят, что интеграл расходится.

16.Правила оценки сходимости несобственных интегралов

Для исследования сходимости и расходимости несобственных интегралов применяется признак сравнения: Пусть функция f(x) и g(x) удовлетворяют неравенству: и несобственный интегралсходится. Тогда сходится и несобственный интегралДоказательство: В силу сходимостипо критерию Коши для функциивыполняется неравенство. Но тогда, ввиду неравенств:аналогично неравенство будет справедливо и для функции f(x), т.е.Следовательно, по критерию Коши существует предел:т.е. этот интеграл сходится.

Замечание1: Аналогичный признак сравнения справедлив и для несобственных интегралов 2 рода. Замечание2: Отрицанием признака сравнения будет следующее утверждение: если несобственный интеграл расходится, то расходится и несобственный интеграл

Интегральный признак сходимости. Сходимость ряда Теорема. Пусть   - непрерывная, неотрицательная, монотонно убывающая функция, определенная при . Тогда ряд  и интеграл   либо оба сходятся, либо оба расходятся.

Доказательство. Ввиду монотонности при всех  выполняются неравенства . Интегрируя, получаем . Тогда , или . Поэтому если  сходится, то . Тогда    и ,   ряд сходится. Пусть теперь наоборот, известно, что ряд сходится. Тогда . Взяв произвольное   выберем  так, чтобы . Тогда . Значит,   сходится.

17.Площадь плоской фигуры.

(Площадь плоской фигуры) Заключим фигуру Р в прямоугольник со сторонами параллельными осм Ох и Оу прямоуг обозн R; Разабьём прам R на мн-во мелких прямоуг.; Обозначим А фигуру полученную объединением прямоуг , целиком лежащих в плоскости R, а через В фигуру полученную объедин прямоугольников лежащих в Р. A-òA B-òB ; Пусть d- наибольшая диагональ прямоугольников разбиения, если при d®0 òA и òB ® к одному и томуже пределу, то фигура Р-наз квадрируемой, а её площадь считается равной ò; Пусть ф-ция f(x) –непрерывна на [a,b] и f(x)³0 "xÎ [a;b] и ограничена снизу осью Ох а по бокам x=a, x=b. Пусть t={xi}i=0i=it-произвольное разбиение отр [a,b]; git={(x,y), xÎ[xi-1,xi], 0£y£mi=inff(x)} Git={(x,y), xÎ [xi-1,xi], 0£y£Mi=supf(x)}; Sgti=1itmiDxi; SGti=1itMiDxi {T} Для того, чтобы ф-ция f(x) огр на [a,b] была интегрируема на этом отр. необходимо и достаточно : lim|t|®0(Sgt-SGt)=0 {Д} т.к. ф-ция f(x) –нерерывна на отр[a,b] то она интегрируема на этом отр. Þ по критерию итегрируемости lim|t|®0SGt= lim|t|®0Sgt=S= aòbf(x)dx {сектор} Сектор ограничен кривой r=f(j), где f(j) – непрерывна на [a,b] и f(j)³0 "jÎ[a,b] {} Пусь t-произвольное разбиение git={(j,r), jÎ[ji-1,ji], 0£r£mi=inff(j)} Git={(j,r), jÎ[ji-1,ji], 0£r£Mi=supf(j)} Т.к. ф-ция f(x)-непрерывна на отр[a,b] то она интегрируема на этом отрезкеÞ Площадь сектора git=m²iDj/2 и Git=M²iDj/2; Sgt=1/2×åi=1itm²iDj SGt=1/2×åi=1itM²iDj по критерии итегрируемости Þ lim|t|®0SGt= lim|t|®0Sgt=S=1/2× aòtf²(j)djÞ P-квадрируема и Sp=1/2× aòbf²(j)dj.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]