Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan.docx
Скачиваний:
32
Добавлен:
18.04.2015
Размер:
312.77 Кб
Скачать

Вопрос 15. (Исследование слау. Теорема Кронекера – Капелли).

Теорема: Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.

RgA = RgA*.

            Очевидно, что система (1) может быть записана в виде:

x1 + x2 + … + xn

          Доказательство.

            1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А* не изменяют ранга.

            2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

Вопрос 16. (Метод Жордана – Гауса для решения слау).

Метод Жордана —Гаусса (метод полного исключения неизвестных) — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана

Алгоритм

  1. Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.

  2. Если самое верхнее число в этом столбце есть ноль, то меняют всю первую строку матрицыс другой строкой матрицы, где в этой колонке нет нуля.

  3. Все элементы первой строки делят на верхний элемент выбранного столбца.

  4. Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.

  5. Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.

  6. После повторения этой процедуры раз получаютверхнюю треугольную матрицу

  7. Вычитают из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.

  8. Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

  9. Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.

Пример

Для решения следующей системы уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

  • К строке 2 добавим: −4 × Строку 1.

  • К строке 3 добавим: −9 × Строку 1.

Получим:

  • К строке 3 добавим: −3 × Строку 2.

  • Строку 2 делим на −2

  • К строке 1 добавим: −1 × Строку 3.

  • К строке 2 добавим: −3/2 × Строку 3.

  • К строке 1 добавим: −1 × Строку 2.

В правом столбце получаем решение:

.

Вопрос 17. (Системы координат).

Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.

В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.

Основные системы:

Декартовы координаты

Расположение точки P на плоскости определяется декартовыми координатами с помощью пары чисел :

  • —расстояние от точки P до оси y с учетом знака

  • —расстояние от точки P до оси x с учетом знака

В пространстве же необходимо уже 3 координаты :

  • —расстояние от точки P до плоскости yz

  • —расстояние от точки P до плоскости xz

  • —расстояние от точки P до плоскости xy

Полярные координаты

Основная статья: Полярная система координат

В полярной системе координат положение точки определяется расстояние до центра координат и углом радиус-вектора с осью Ox.

Термин «полярные координаты» используется только на плоскости, в пространстве применяются цилиндрические и сферические системы координат.

Цилиндрические координаты

Цилиндрические координаты.

Основная статья: Цилиндрическая система координат

Цилиндрические координаты — трехмерный аналог полярных, в котором точка P представляется трехкомпонентным кортежем . В терминах декартовой системы координат,

  • (радиус) — расстояние от оси z к точке P,

  • (азимут или долгота) — угол между положительной («плюсовой») частью оси x и прямой линии, мысленно проведённой от полюса до точки P, спроектирован на xy-плоскость

  • (высота) — расстояние (с учетом знака) от xy-плоскости до точки P.

Примечание: в литературе можно встретить пометку z для h; это не принципиально, но нужно следить, какие отметки применяются.

Полярные координаты имеют один недостаток: значение θ теряет смысл, если r = 0.

Цилиндрические координаты полезны для изучения систем, симметричных вокруг некой оси. Например, длинный цилиндр в декартовых координатах имеет уравнение , тогда как в цилиндрических оно выглядит как r = c

Сферические координаты

Основная статья: Сферическая система координат. Сферические координаты — трехмерный аналог полярных

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]