Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

6 курс / Эндокринология / Эндокринология_и_метаболизм_Фелиг_Ф_,_Бакстер_Дж_Д_,_Бродус_А_Е

.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
11.73 Mб
Скачать

лось, цАМФ активирует специфические протеинкиназы (называемые цАМФ-зависимыми протеинкиназами), фосфорилирующие различные белки в специфических местах. Белки, измененные в результате фосфорилирования, и опосредуют затем гормональные эффекты.

Во многих случаях ближайшие этапы реакции между взаимодействием гормона с рецепторами клеточной поверхности и биологическим ответом клетки неизвестны. Повидимому, цАМФ не принимает участия в этих гормональных эффектах. Главными кандидатами на роль опосредующих факторов в этих случаях являются стимуляция гормонорецепторным комплексом других видов ферментативной активности (других видов киназ, гуанилатциклазы, АДФ-рибозилирующей активности и др.) или ионных (например, кальциевых) потоков. К гормонам, действующим таким образом, относятся инсулин, соматомедины и близкие к ним факторы, такие, как активность, стимулирующая размножение клеток (АСРК) и неподавляемая инсулиноподобная активность (НИПА), другие факторы роста, такие, как эритропоэтин, фактор роста фибробластов (ФРФ), фактор роста эпидермиса (ФРЭ), группа гормонов СТГ (СТГ, хорионический соматомаммотропин и пролактин), а-адренергические агонисты, некоторые рилизинггормоны, такие, как соматостатин, а также окситоцин и ангиотензин.

Заслуживают упоминания и две другие черты рецепторов полипептидных гормонов и катехоламинов. Во-первых, гомологичный гормон обычно снижает (отрицательно регулирует) чувствительность клеток к нему. Как правило, это обусловливается в основном вызываемым гормоном уменьшением числа своих собственных рецепторов. Однако гормон может также снижать клеточную чувствительность к себе самому, влияя на компоненты реакции, локализующиеся дистальнее рецептора. Такая отрицательная регуляция представляет собой механизм аутомодуляционного типа, который накладывается на другие механизмы интеграции. Возможно, это может служить и епоеобом защити организма от чрезмерного воздействия гормонов при их высоком содержании в случае резкой и длительной стимуляции их продукции. Однако это общее правило имеет и исключения, и в некоторых случаях гормоны могут повышать клеточную чувствительность к своему действию (например, ангиотензин и надпочечники, пролактин и молочная железа). Во-вторых, поверхностные гормонорецепторные комплексы могут подвергаться «интернализации» в пузырьках внутри клетки. В отношении ЛПНП этот механизм оказывается существенным для ингибирования холестерином своего биосинтеза. После сплавления пузырьков с внутриклеточными лизосомами, содержащими ферменты, холестерин может отщепляться от «интернализированных» ЛПНП и в свободном виде действовать внутри клетки с помощью пока не выявленных рецепторов. В отношении полипептидных гормонов и катехоламинов роль «интернализации» гормона неизвестна. Имеющиеся данные свидетельствуют о том, что в некоторых случаях «интернализация» не является обязательным условием гормонального эффекта (например, для гормонов, активирующих аденилатциклазу); активно исследуется вопрос, не играет ли она роли в доставке гормона к внутриклеточным местам действия в других случаях. Однако «интернализация» может принимать участие в процессах деградации гормона и/или рецептора.

Стероидные гормоны, по крайней мере в большинстве случаев, действуют, очевидно, внутриклеточно. Они проникают в клетку с помощью неизвестных механизмов, но, возможно, путем пассивной диффузии и связываются с внутриклеточными рецепторами, которые по своей локализации могут быть как цитоплазматическими, так и ядерными. Взаимодействие гормона с рецептором вызывает конформационные изменения последнего, позволяющие ему связываться с ядерным хроматином. Связавшись с хроматином, гормонорецепторный комплекс может увеличивать (или уменьшать) образование специфических мРНК. Механизм (ы), с помощью которого эти комплексы влияют на транскрипцию, не известен. Продукты трансляции образующихся специфических мРНК и обусловливают реакцию на стероидный гормон. Например, таким продуктом мог бы быть фермент,. принимающий участие — в глюконеогенезе. Возможны также независимые от ядра эффекты стероидных гормонов (например, быстрое ингибирование глюкокортикоидами секреции АКТГ), но их механизмы выяснены недостаточно.

Тиреоидные гормоны, по-видимому, также проникают в клетку и связываются с рецепторами, локализованными в ядерном хроматине. В отличие от того, что наблюдают у стероидных гормонов, рецепторы тиреоидного гормона находятся в хроматине независимо от присутствия или отсутствия гормона; активный гормон (главным образом, Т3) не способствует связыванию рецептора с хроматином. Взаимодействие гормона с рецептором каким-то неизвестным способом регулирует (вероятно, путем стимуляции транскрипции ДНК в мРНК) уровень специфических мРНК, продукты трансляции

которых и определяют реакцию на тиреоидный гормон. В этом случае также имеются некоторые данные о возможности независимого от ядра действия тиреоидного гормона, что давно уже служит предметом интенсивных исследований.

Поскольку для проявления своих эффектов стероидные и тиреоидные гормоны, как правило, требуют индукции синтеза РНК и белка, неудивительно, что реакции на эти гормоны обычно развиваются медленнее, нежели многие из тех, которые вызываются полипептидными гормонами. Это положение, вместе с уже изложенными, подчеркивает тот факт, что указанные гормоны чаще участвуют именно в долгосрочных видах модуляции метаболизма.

ГОРМОНЫ, ВЛИЯЮЩИЕ НА ФУНКЦИЮ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

В какой-то мере гормоны можно группировать и по характеру вызываемых ими реакций. Эти реакции также можно соотносить с действием групп гормонов, обладающих взаимоуравновешивающими эффектами. Поскольку, однако, каждый гормональный домен в процессе эволюции приобрел множество функций, постольку приводимая далее классификация, хотя она, возможно, и полезна с позиций оценки некоторых механических и физиологических параметров, по необходимости чересчур упрощена и, вне всякого сомнения, неполна.

ГОРМОНЫ, ВЛИЯЮЩИЕ НА МЕЖУТОЧНЫЙ ОБМЕН И РОСТ

Общий характер действия гормонов этой группы уже был описан, причем особенный упор был сделан на эффекты глюкокортикоидов. Например, глюкокортикоиды, катехоламины, простагландин E1 (не ясно, являются ли простагландины гормонами в строгом смысле слова) и глюкагон способствуют сохранению содержания глюкозы и в некоторых случаях оказывают катаболическое и антианаболическое действие на ткани. Глюкокортикоиды (в избыточных количествах) угнетают и рост. В отличие от этого, инсулин и некоторые факторы роста, в том числе соматомедины, НИПА, АСРК, ФРЭ и ФРФ, вызывают эффекты противоположного типа с определенной степенью стимуляции роста и утилизации углеводов [4, б]. Андрогены, прогестины и эстрогены также обладают определенными свойствами факторов роста, хотя прогестерон в физиологических концентрациях может препятствовать проявлению некоторых эффектов эстрогенов. Гормон роста, пролактин и плацентарный лактоген в свою очередь проявляют активность в отношении влияния на рост, хотя эти реакции полностью или частично могут быть обусловлены стимуляцией продукции таких факторов роста, как соматомедины [4, 6]. Действительно, те эффекты СТГ и хорионического соматомаммотропина, которые не опосредуются соматомедином (соматомединами), образующимся под их влиянием, скорее относятся к углеводосохраняющему типу с тенденцией к стимуляции гипергликемии, повышенного липолиза и др. Интересно, что поверхностноактивные гормоны углеводосохраняющей группы активируют аденилатциклазу, тогда как соответствующие гормоны ростстимулирующей группы таким эффектом не обладают [4]. Таким образом, подобно ситуации у бактерий цАМФ используется некоторыми гормонами для мобилизации углеводов.

ГОРМОНЫ, ОБЛАДАЮЩИЕ ВЫСОКОСПЕЦИАЛИЗИРОВАННЫМИ ФУНКЦИЯМИ: ТРОПНЫЕ ГОРМОНЫ

Интеграция эндокринной системы требовала появления в эволюции таких гормонов, которые были бы специально предназначены для регуляции желез, специализированных в отношении продукции других гормонов. Так обстоит дело с ТТГ, который регулирует продукцию тиреоидных гормонов, ХГЧ, регулирующим продукцию прогестерона, ФСГ, играющим важную роль в созревании фолликулярных клеток и клеток Сертоли, с ЛГ, который регулирует продукцию прогестерона в женском организме и продукцию тестостерона в мужском, АКТГ, регулирующим продукцию глюкокортикоидов, ангиотензином, регулирующим продукцию альдостерона, ренином, стимулирующим продукцию ангиотензина2, а также с гипоталамическими рилизинг-гормонами. В некоторых случаях появлялись гормоны с высокоспециализированными функциями, в главные

2 Можно спорить, является ли ренин гормоном в строгом смысле слова, — так как он представляет собой фер-

мент, действие которого заключается в превращении субстрата ренина (ангиотензиногена) в ангиотензин I в плазме. Тем не менее его удобно рассматривать как гормон.

задачи которых не входила регуляция продукции других гормонов. Так обстоит дело с регулирующим пигментный обмен МСГ и окситоцином, участвующим в регуляции сокращения матки. Как правило, гормоны играют и дополнительную роль. Это положение иллюстрируется значением ЛГ, ФСГ и ХГЧ в регуляции отдельных сторон нормального менструального цикла и/или беременности. Тем не менее число тканей-мишеней для гормонов этих классов по большей части ограничено. В большинстве случаев эти тропные гормоны активируют аденилатциклазу, но некоторые из них (ангиотензин, соматостатин, окситоцин), по-видимому, действуют другим путем.

ГОРМОНЫ, РЕГУЛИРУЮЩИЕ МИНЕРАЛЬНЫЙ И ВОДНЫЙ ОБМЕН

Альдостерон, вазопрессин, ПТГ, кальцитонин и витамин D являются гормонами, которые по большей части приобрели специфические функции в регуляции уровня ионов и воды. Механизмы их действия разнообразны, но распространенность тканеймишеней для каждого класса весьма ограничена. Однако это не единственные гормоны, влияющие на обмен жидкостей и электролитов; на него могут влиять, например, и глюкагон, и глюкокортикоиды, и катехоламины.

ГОРМОНЫ, ВЛИЯЮЩИЕ НА ФУНКЦИЮ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Гормоны, влияющие на сердечно-сосудистую и дыхательную системы, как правило, обладают также другими важными метаболическими эффектами. Многие элементы этих систем преимущественно контролируются ЦНС, изменяясь под действием катехоламинов и ацетилхолина, высвобождаемых нервными окончаниями. Конечно, выделяемый

мозговым слоем надпочечников адреналин также может оказывать - и - адренергическое действие на сердечно-сосудистую и дыхательную системы. Глюкокортикоиды, эстрогены, глюкагон, простагландины и другие гормоны в свою очередь оказывают соответствующее действие. Ангиотензин, о котором уже упоминалось в связи с его способностью регулировать обмен электролитов через стимуляцию продукции альдостерона, является и наиболее мощным из известных сосудосуживающих агентов, и его продукция регулируется ренином. Брадикинин — наиболее мощный из известных сосудорасширяющих факторов — образуется из белка-предшественника под влиянием фермента калликреина, который может также регулировать выделение ренина.

ГОРМОНЫ РАЗВИТИЯ

Центром обсуждения до сих пор служила главным образом регуляция гомеостаза у зрелых организмов. Однако гормоны играют решающую роль и в репродуктивной биологии, а также в процессах постнатального роста и развития. Действительно, большинство упомянутых гормонов оказываются важными на определенных стадиях развития. В некоторых случаях (например, в отношении СТГ) не ясно, необходим ли вообще гормон в зрелом организме, даже если его метаболические эффекты позволяют отнести его к группе гормонов, влияющих на межуточный обмен.

ЗАКЛЮЧЕНИЕ

В кратком очерке мы рассмотрели эволюционные, функциональные и организационные стороны эндокринной системы. Для того чтобы сделать это, нам потребовалось описать физиологическое действие гормонов и молекулярные механизмы, которые они «выбрали» для осуществления своего действия.

Эндокринная система использует многие регуляторные механизмы, существующие у представителей низших форм жизни, в частности способность специфических изменений в окружающей клетки среде регулировать концентрации лигандов (связывающихся молекул). Эти лиганды взаимодействуют с другими молекулами клетки (белками, ДНК и др.), влияя на них таким образом который предполагает изменение клеточного метаболизма. Для такой регуляции используются различные виды регуляторных лигандов [ионы, аминокислоты и их аналоги, нуклеотиды, стероиды и их аналоги, липиды (например, простагландины) и белки]. Во многих случаях специфические стимулы среды приводят к изменению концентрации лигандов, которые поэтому приобрели значение «символов» определенных метаболических состояний (например, дефицит

глюкозы). Естественный отбор затем обусловил приобретение такими «символами» регуляторных свойств, позволяющих им влиять на клеточный метаболизм в полезном для клетки или организма направлении. В ходе дальнейшей эволюции эти молекулы распространяли свое влияние на все более широкие домены, т. е. на различные процессы, с тем, чтобы все нормализующие влияния, необходимость в которых символизирует молекула, могли осуществляться координированным образом.

Для передачи информации между клетками в многоклеточных организмах сформировались нервная и эндокринная система. Если у относительно просто устроенных живых организмов имелась возможность непосредственной связи нервных волокон со всеми клетками, то у более сложных организмов это оказалось менее практичным. В результате нервная система как главный координатор функций организма приобрела способность секретировать регуляторные молекулы (гормоны), переносимые с циркулирующей кровью. Очевидно, существовала целесообразность специализации эндокринных желез, способных продуцировать эти гормоны, и в ходе дальнейшей эволюции эти железы мигрировали из нервной системы. В некоторых случаях они локализовались там, где гормоны могли специально поступать в высоких концентрациях к отдельным органам.

Гормоны синтезируются в эндокринных железах под центральнонервным, гормональным и другим (например, метаболическим) контролем. Полипептидные гормоны представляют собой продукты трансляции специфических мРНК. Эти продукты обычно подвергаются процессингу путем протеолитического расщепления а иногда модифицируются другими способами, например гликозилированием. Тиреоидные, стероидные гормоны и катехоламины образуются в результате серии химических реакций, катализируемых ферментами, которые обычно специфичны для определенной эндокринной железы. Затем эти гормоны циркулируют в плазме крови (часто в связанном с белками плазмы виде), достигая тканей-мишеней. В некоторых случаях в периферических тканях происходит дальнейшая модификация секретируемого железой продукта, которая приводит к окончательному образованию активной формы гормона. В плазме и периферических тканях происходит также распад гормонов.

Способность тканей-мишеней распознавать гормоны определяется присутствием в них рецепторных белков, которые специфически связывают гормон. Как правило, это взаимодействие обусловливает изменение конформации рецептора, что «запускает» последующие этапы реакции на гормон. Отдельные типы клеток запрограммированы на определенные реакции, индуцируемые состоянием данного рецептора. Через данный класс рецепторов обычно могут действовать несколько гормонов, а иногда гормон может действовать через рецепторы нескольких классов (например, адреналин дейст-

вует через - и -адренергические рецепторы). В связи с этим, вероятно, легче всего классифицировать действие гормонов путем описания эффектов, опосредуемых

конкретными классами рецепторов ( - и -адренергическими, инсулиновыми, глюкокортикоидными и др.). Рецепторы для полипептидных гормонов и катехоламинов локализуются на поверхности клеток (причем гормонорецепторные комплексы иногда могут поступать внутрь клетки—«интернализация»), и во многих случаях изменение их состояния может влиять на мембранные функции (например, на активность фермента аденилатциклазы), передавая информацию в клетку. Рецепторы тиреоидных и стероидных гормонов обнаруживаются внутри клеток, и связывание гормонов с ними может изменять метаболизм, влияя на концентрацию отдельных видов мРНК.

Поскольку гормоны влияют на любую систему органов и столь широко участвуют в регуляции метаболизма, любая их классификация с позиций физиологических эффектов является чрезмерным упрощением. Тем не менее иногда это делать полезно (например, тропные гормоны, стимулирующие продукцию других гормонов; гормоны, влияющие на углеводный обмен, и др.). Такая группировка позволяет обнаружить некоторые общности в механизмах действия гормонов и совокупностях вызываемых ими реакций. Это полезно и при рассмотрении организации эндокринной системы, проявляющейся координированными реакциями отдельных гормонов и групп их, продукция которых может находиться под жестким контролем. Она проявляется также другими механизмами, такими, как торможение гормональной продукции, прекращение реакции на гормон или снижение клеточной чувствительности к гормонам. Наконец, действие других гормонов, стимулируемых первыми прямо или опосредованно через их аффекты, оказывает уравновешивающее действие, что позволяет более точно регулировать метаболизм.

Глава 3. БИОСИНТЕЗ И СЕКРЕЦИЯ ГОРМОНОВ

ДЖ. Ф. ХЭБИНЕР (J. F. HABENER)

За прошедшие несколько десятилетий эндокринологи и специалисты в области клеточной биологии получили массу сведений о процессах, касающихся синтеза гормонов. Накопление этой новой информации было обязано сочетанию ряда факторов: 1

— применению радиоактивных изотопов для метки предшественников и промежуточных продуктов, образующихся в ходе различных путей биосинтеза; 2 — разработке более тонких и чувствительных методик анализа клеточных компонентов и 3 — усовершенствованию клеточных и бесклеточных систем, на которых проводят исследования биосинтеза в условиях in vitro. Помимо этого, непрерывное повышение разрешающей силы трансмиссионного электронного микроскопа в сочетании с разработкой чувствительных иммунохимических, цитохимических и авторадиографических методик выявления субклеточной локализации гормонов и вновь синтезируемых белков позволило получить сведения о точном местоположении синтетических реакций в клетке.

В этой главе рассматривается биосинтез гормонов пяти различных классов: полипептидных и белковых, тиреоидных, катехоламинов, стероидных гормонов надпочечников и стероидных гормонов — производных витамина D. В каждом разделе главы конкретно рассматривается один из этих классов гормонов и освещаются химическая структура гормонов и их интермедиатов, биохимические реакции, протекающие на каждом этапе биосинтеза, субклеточные органеллы, в которых протекают эти реакции и, где возможно, биохимические механизмы регуляции продукции и секреции гормонов.

Не претендуя на всеобъемлющий охват проблемы биосинтеза; и секреции гормонов, мы рассмотрим некоторые стороны путей биосинтеза различных гормонов с указанием на их сходства в различия в отдельных случаях. Не будут даже упомянуты процессы, которые должны встречаться в биосинтезе столь важного класса гормо- нально-активных соединений, каким являются гипоталамические рилизинг-факторы, поскольку до сих пор об этих процессах ничего не известно. Другим классом соединений, не рассматриваемым в этой главе, являются простагландины. Они обладают важными функциями в качестве местных гуморальных трансмиттеров и подробно анализируются в других обзорах.

Можно лишь удивляться, если не поражаться, столь очевидному разнообразию веществ, выполняющих функции гормонов. Сложность этих веществ колеблется от белковых структур до более простых производных аминокислот. Каждая группа гормонов должна была развиваться независимо от другой, хотя все они действуют вместе, интегрируя необходимые для жизни физиологические функции. При чтении этой главы следует обратить внимание на то, что наше понимание, по крайней мере в описательном смысле, химических структур и реакций, участвующих в. образовании гормонов, достаточно полно. Точно так же идентифицировано большинство субклеточных структур, в которых протекают многие из гормональных реакций. Однако, переходя к клеточным механизмам, принимающим участие в продукции в секреции гормонов и ответственным за регуляцию этих процессов, мы попадаем в область неизвестного. В настоящее время ведутся интенсивные исследования, направленные на выяснениемолекулярной и клеточной основы регуляции биосинтеза гормонов, в надежде на то, что наше невежество в этой области сменится, наконец, пониманием предмета.

БЕЛКОВЫЕ ГОРМОНЫ

Эндокринологи, изучающие биологические функции белковых ж меньших по размеру полипептидных гормонов (менее 100 аминокислотных остатков в цепи), все более интересуются деталями биосинтеза белков, стремясь понять, каким образом регуляция продукции в клетке секретируемого белкового гормона связана с его функцией. Данные исследований синтеза белковых гормонов и других секретируемых белков, полученные за последние несколько лет, показали, что этот процесс включает синтез предшественников, превосходящих размерами окончательные секретируемые молекулы и превращающихся в конечные клеточные продукты путем расщепления в ходе

транслокации, протекающей в специализированных субклеточных органеллах секреторных клеток. Прежде чем более подробно описывать этапы биосинтеза полипептидных гормонов, целесообразно рассмотреть различные этапы биосинтеза белка вообще.

Рис. 3—1 Схема синтеза белка, демонстрирующая этапы переноса генетической информации от ДНК к РНК и белку. Схема специально предусматривает путь биосинтеза секретируемых белков, посттрансляционная модификация которых происходит в месте их синтеза в шероховатом эндоплазматическом ретикулуме (ШЭР) (Habener, Potts [4]).

ОБЩИЕ АСПЕКТЫ БИОСИНТЕЗА БЕЛКА

Процессы синтеза белка включают много сложных реакций, с помощью которых информация, исходно закодированная на полинуклеотидном «языке» гена (ДНК) в конце концов будет выражена полиаминокислотным «языком» конечного биологически активного белка. В целях обсуждения эти процессы можно разделить на четыре этапа

(рис. 3—1).

1.Транскрипция. Синтез РНК в форме предшественников, обладающих большой молекулярной массой, на матрице ДНК.

2.Посттранскрипционная модификация. Контролируемая модификация РНК, включающая этапы образования мРНК из РНК-предшественника путем вырезания и нового объединения сегментов РНК, равно как и модификации 3-конца РНК за счет полиаденилирования и 5 -конца за счет добавления 7-метилгуанозиновых «колпачков».

3.Трансляция. Сборка аминокислот с помощью специфического взаимодействия антикодонов аминоацилированных тРНК,— «носителей» с соответствующими кодонами мРНК, связанной с полирибосомами, и, наконец, полимеризации аминокислот с образованием полипептидной цепи.

4.Посттрансляционная модификация. Одна реакция или их сочетание, включающее расщепление пептидных связей (превращение биосинтетических предшественников в промежуточные или окончательные формы белка путем протеолитического расщепления), образование аминокислотных производных. (гликозилирование, фосфорилирование) и складывание полученной полипептидной цепи с приданием ей нативной конфигурации.

Последний этап синтеза белка представляет особый интерес в силу того, что такие посттрансляционные модификации могут являться способом, которым клетка различает отдельные классы белков и направляет их в соответствующие области, где они оказывают свое действие [1].

Эта проблема (разделение белков по клеточным пространствам после синтеза) уже много лет привлекает внимание специалистов в области клеточной биологии. Установлено, что типичная эукариотическая клетка за определенное время в процессе цикла синтезирует около 50 000 различных белков [2]. Современные данные свидетельствуют о том, что это множество производимых клеткой различных белков синтезируется общим пулом полирибосом [3]. Каждый вид синтезированных белков направляется в специальное место, где проявляется его специфическая биологическая функция. Например, особые группы белков транспортируются в ядро и другие субклеточные органеллы, где они выполняют функции либо регуляторных белков, либо ферментов, либо структурных белков, участвующих в биогенезе различных органелл, тогда как другие группы белков синтезируются специально на экспорт из клетки (иммуноглобулины, факторы свертывания крови, сывороточный альбумин и белковые или пептидные гормоны). Понятно, что силы, принимающие участие в этом процессе направленного транспорта белков, должны определяться очень сложным сочетанием информационных сигналов. Другими словами, поскольку информация для этого процесса транслокации может заключаться только во всей, либо в части первичной структуры или в конформационных свойствах самого белка, то посттрансляционная модификация (см. рис. 3—1) может играть решающую роль в определении белковой функции. Как только вновь синтезированный белок высвобождается из комплекса мРНК — рибосома — образующаяся цепь, дальнейшая регуляторная роль РНК представляется совершенно невероятной.

Другая проблема, стоящая перед исследователями, работающими в области биосинтеза полипептидных гормонов, заключается в том, каким образом регулируются биосинтетические и секреторные процессы. Исследования регуляторных механизмов ведутся в двух направлениях: 1 — изучение природы клеточных механизмов, — участвующих в сопряжении внеклеточных регуляторных стимулов с внутриклеточными процессами, определяющими изменения образования и высвобождения гормонов; 2 — определение стадии синтеза белка, на которую направлена регуляция, т. е. выяснение происходит она на транскрипционном (и претрансляционном), трансляционном или посттрансляционном уровне.

Рис. 3—2. Типичные продуцирующие белковые гормоны эндокринные клетки, в которых видны субклеточные органеллы. а — Гипофизарный тиротроф (мышь); б — опухоль у мыши. состоящая из тиротропных клеток, сохраняемая путем серийных подкожных трансплантаций мышам с гипотиреозом: в — околощитовидная железа быка: Можно видеть (резко выраженный ШЭР и редкие секреторные гранулы в опухоли из тиротропных клеток (см. рис. 3—26) по сравнению с нормальным гипофизарным тиротрофом (см. рис. 3—2а).

Я — ядро: ШЭР — шероховатый эндоплазматический ретикулум; ПК — пластинчатый комплекс: М — митохондрия; ПМ — плазматическая мембрана; СГ — секреторная гранула; ИСТ незрелая секреторная гранула зсг — зрелая секреторная гранула. Электронная микрофотография Х10000.

СУБКЛЕТОЧНАЯ МОРФОЛОГИЯ КЛЕТОК, СЕКРЕТИРУЮЩИХ БЕЛКОВЫЕ ГОРМОНЫ

В значительной мере благодаря работам Palade и сотр. [3] было получено много сведений относительно морфологии путей используемых клеткой,. синтезирующей белки на экспорт. Некоторые субклеточные морфологические особенности свойственны различным белоксекретирующим клеткам. Такие клетки содержат множество окруженных мембранами органелл: эндоплазматический ретикулум, пластинчатые комплексы (аппараты Гольджи) и варьирующее число секреторных гранул (рис. 3—2, 3— 3). Белки, предназначенные для секреции, попадают в эти субклеточные органеллы и транспортируются в них.

Рис. 3—3. Схема субклеточного транспорта и секреторного пути в белоксекретирующей клет-

ке.

I — синтез белка на полирибосомах, прикрепленных к эндоплазматическому ретикулуму, и направленный выход через мембрану в цистернальное пространство: II— образование челночных пузырьков (переходные элементы) из эндоплазматического ретикулума, сменяемое их транспортом и включением в пластинчатый комплекс (ПК); III — образование секреторных гранул в ПК; IV — транспорт секреторных гранул к плазматической мембране, слияние с плазматической мембраной и экзопигоз, приводящий к выделению содержимого гранул во внеклеточное пространство. Можно видеть, что секреция способна осуществляться путем транспорта секреторных пузырьков, а также незрелых и зрелых гранул. Некоторые гранулы захватываются лизосомами и разрушаются (кринофагия). ШЭР — шероховатый эндоплазматический ретикулум; ГЭР — гладкий эндоплазматический ретикулум.

Секретируемые белки синтезируются на шероховатом эндоплазматическом ретикулуме (ШЭР), состоящем из полирибосом, прикрепленных к сложно устроенным мембранным мешочкам, содержащим цистерны. Вновь синтезированные белки быстро получают доступ в цистерны за счет транспорта через двойной слой липидов мембраны. По цистернам эндоплазматического ретикулума белки транспортируются в пластинчатый комплекс либо путем прямого переноса через цистерны, которые продолжаются в мембранные каналы пластинчатого комплекса, либо с помощью совершающих челночные движения пузырьков, называемых переходными элементами (см. рис. 3—3). Разные секреторные клетки, по-видимому, преимущественно используют тот или другой механизм транспорта белка из ШЭР в пластинчатый комплекс. В комплексе происходит упаковка белков в секреторные пузырьки и/или секреторные гранулы. Окруженные мембраной секреторные пузырьки отпочковываются от пластинчатого комплекса в виде незрелых гранул, подвергающихся по мере уплотнения белкового содержимого созреванию. Высвобождение белка во внеклеточное пространство происходит путем миграции секреторных гранул на периферию клетки и слияния мембраны, покрывающей гранулы, с плазматической мембраной (экзоцитоз), что и приводит к выходу белков из клетки.

Хотя это окончательно и не доказано, но некоторые биологи считают, что секреция белковых гормонов может происходить также путем внутриклеточного транспорта и высвобождения белков, содержащихся в секреторных пузырьках и незрелых секреторных гранулах (см. рис. 3—3) [3L Если такие альтернативные-пути секреции действительно существуют в дополнение к механизму образования и экзоцитоза зрелых гранул, то возникает возможность того, что разные внеклеточные стимулирующие факторы отличаются друг от друга своей сравнительной эффективностью в отношении модуляции секреции гормона тем или иным путем. Например, можно было бы предположить, что секреция инсулина, вызываемая глюкозой, с одной стороны, и кальцием

или -адренергическими агонистами — с другой, осуществляется различными секреторными путями, или что часть секреции паратиреоидного гормона, не подавляемая повышенным уровнем внеклеточного кальция, высвобождается путем, морфологически отличающимся от кальцийчувствительного пути.

ПУТЬ БИОСИНТЕЗА

Значительный интерес вызвало открытие синтеза белковых и полипептидных гормонов в виде более крупных предшественников, которые затем путем расщепления модифицируются в более мелкие (рис. 3—4) [4]. На самом деле белковые и полипептидные гормоны составляют только один из многих классов белков, синтезируемых как предшественники. В качестве примеров белков. различных классов могут служить сывороточный альбумин, протеины яичного белка, антитела, коллаген, ферменты поджелудочной железы, вирусные и связанные с мембранами белки. Усилия исследователей в настоящее время сфокусированы на выяснении физиологической роли биосинтетических предшественников на пути образования гормонов, а также общего значения предшественников секретируемых белков.

Одна из вероятных функций последовательности предшественников видна на примере инсулина. С-пептид проинсулина — соединительный пептид, связывающий А- и В-цепи инсулина — принимает участие, по-видимому, в правильной сборке цепей, создавая возможность эффективного образования дисульфидных связей. Такая стабилизирующая функция должна иметь место только применительно к ограниченному числу секретируемых белков, таких, как инсулин, поскольку многие белки существуют в виде одиночных полипептидных цепей, лишенных дисульфидных мостиков.

Рис. 3—4. Неполный перечень пребелков различных структурных классов.

Стрелками показаны участки расщеплений, в результате чего предшественники превращаются в промежуточные или окончательные продукты. Не все предшественники для превращения в промежуточные формы пробелков проходят через стадию расщепления (Habener, Potts [4]).

В настоящее время складываются представления в пользу вероятной роли предшественников в посттрансляционных процессах, обусловливающих внутриклеточный транспорт и компартментализацию гормонов по ходу секреторного пути [5, 6]. Эта гипотеза, известная под названием сигнальной, предложена Mistein и сотр. [5], а также Blobel и Sabatini [6] для объясневия молекулярного механизма, с помощью которого белки, предназначенные для секреции из клетки, избирательно получают доступ к окруженным мембранами субклеточным органеллам, участвующими в их транспорте, упаковке и секреции.

На основании модели, приведенной на рис. 3—5, можно объяснить путь биосинтеза паратиреоидного гормона как представителя полипептидных гормонов с учетом положений сигнальной гипотезы. Этот путь включает последовательное расщепление биосинтетических предшественников: препропаратиреоидный гормон (пре-про-ПТГ)

пропаратиреоидный паратиреоидный гормон. Инициация синтеза белка происходит на полирибосомах в матриксе клетки. Инициальная аминокислота (аминокислоты) — метионин, кодируемая специфическим кодоном АУГ, отделяется от растущей полипептидной цепи, когда она достигает в длину примерно 20—30 аминокислот (примерная длина полипептида, покрывающая протяженность крупной рибосомальной субъединицы). Этот процесс считается общим для синтеза всех белков, продуцируемых эукариотами.