Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фізика. Курс лекцій.doc
Скачиваний:
32
Добавлен:
18.11.2019
Размер:
8.8 Mб
Скачать

2.4. Електропровідність твердих тіл

План лекції

2.4.1. Електричний струм в металах

2.4.2. Залежність опору металів від температури. Надпровідність.

2.4.3. Поняття про квантову теорію провідності твердих тіл

2.4.1. Електричний струм в металах

Для дослідження носіїв струму Е. Рікке склав послідовно три різнорідних циліндри з добре відшліфованими основами і пропускав через них більше року електричний струм. За час проходження струму через циліндр був перенесений заряд. Проте зважування циліндрів після досліду показало, що маси їх не змінилися, в них не відбулося жодних змін, не було ніяких слідів перенесення речовини. Звідси було зроблено висновок, що носії електричного струму не зв'язані з атомами й однакові для всіх металів.

Наступним кроком у дослідженні носіїв струму в металах було виявлення їх інерційних рухів. Суть дослідів така. Якщо металевий стержень, що переміщується з швидкістю , різко загальмувати, то в колі провідника з увімкненим чутливим гальванометром виникає короткочасний електричний струм. Це пояснюється тим, що в процесі руху стержня носії струму захоплюються кристалічною решіткою металу і набувають швидкості , а в момент гальмування стержня вони продовжують рухатися за інерцією, внаслідок чого виникає струм.

Рис. 2.8. Встановлення носіїв струму в металах

Інерційний ефект для виявлення вільних електрично заряджених частинок у металах використали Л.І.Мандельштам, МД.Папалексі. Вони надавали котушці з провідником швидких крутильних коливань відносно осі, а кінці провідника приєднували до нерухомої телефонної трубки (рис. 2.8). У колі виникав електричний струм, який спричинював тріск у телефонній трубці. Цими дослідами було підтверджено наявність у металах вільних електричних заряджених частинок; проте ці досліди не виявляли напряму струму і знака заряду частинок.

Г.Стюарт і Р.Толмен обертали котушку з великою кількістю витків мідного дроту, а потім раптово гальмували її (рис. 2.8). Кінці котушки замикались на чутливий балістичний гальванометр G, який давав можливість вимірювати імпульс струму в момент гальмування котушки. За напрямом відхилення стрілки гальванометра вдалося встановити, що в металевому провіднику рухаються й утворюють струм негативно заряджені частинки. Було визначено також їх питомий заряд (відношення заряду до маси частинки - ). З дослідів було одержано такі значення: для міді - 1,61011 Кл/кг, алюмінію - 1,541011, срібла - 1,491011 Кл/кг.

Отже, величина питомого заряду в різних дослідах добре узгоджується з припущенням, що носіями електричного струму в металах є вільні електрони, які хаотично рухаються між вузлами кристалічної решітки і утворюють своєрідний електронний газ.

Наявність вільних електронів пояснюється тим, що зовнішні електрони (валентні), які слабко взаємодіють з ядрами атомів, перестають бути зв'язаними з окремими атомами й легко переходять від одного атома до іншого через усю кристалічну решітку. За сучасними уявленнями, від одновалентних атомів металів відщеплюється по одному електрону, а від двовалентних - по два електрони. Ці електрони не належать окремим атомам - вони ніби «усуспільнені» всіма атомами. Концентрація таких електронів порядку 1028 м-3. Їх називають електронами провідності, оскільки вони зумовлюють електричний струм у металах.