Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задачник.doc
Скачиваний:
10
Добавлен:
17.11.2019
Размер:
1.03 Mб
Скачать

Восстановители и окислители

Атомы, молекулы или ионы, отдающие электроны, называются восстановителями. Во время реакции они окисляются. Атомы, молекулы или ионы, присоединяющие электроны, называются окислителями. Во время реакции они восстанавливаются.

К окислителям относятся простые и сложные вещества, которые содержат элементы, обладающие характерным свойством присоединять электроны. Сильные окислительные свойства проявляют фтор, озон, кислород, галогены и другие неметаллы. Окислительные свойства характерны для KMn+7O4, K2Cr62+O7, Pb+4O2, NaBi+5O3, HN+5O3, концентрированной H2S+6O4 и других веществ, которые содержат атомы элементов в высших степенях окисления.

Вещества, содержащие элементы с промежуточной степенью окисления - Mn4+O2, HN3+O2, H2O21-, S+4O2 и другие - могут понижать и повышать свою степень окисления и поэтому, в зависимости от условий, могут проявлять свойства окислителей и восстановителей, например:

2SO2 + O2 2SO3 SO2 - восстановитель

SO2 + 2H2S  3S + 2H2O SO2 - окислитель

Неметаллы в свободном состоянии также могут обладать двойственными окислительно-восстановительными свойствами. Атомы металлов в реакциях окисления - восстановления обладают только восстановительными свойствами.

Важнейшие окислители

1.Неметаллы F2, O3, O2, Cl2, Br2.

2.Соединения, содержащие атомы металлов или неметаллов в высшей степени окисления: KMnO4, K2Cr2O7, PbO2, НNO3, концентрированная H2SO4.

Важнейшие восстановители

1.Активные металлы.

2.Некоторые неметаллы H2, C.

3.Соединения неметаллов в низшей степени окисления: H2S, HI, NH3.

4.Соединения металлов и неметаллов в промежуточной степени окисления: FeSO4, CO, SnCl2, Na2SO3.

5.Органические вещества: H2C2O4, C2H5OH, C6H12O6.

Составление уравнений овр методом полуреакций

Метод полуреакций основан на составлении ионных уравнений для процессов окисления восстановителя и восстановления окислителя с последующим суммированием их в общее ионное уравнение. При составлении уравнений методом полуреакций необходимо руководствоваться следующими правилами.

1. Если участники ОВР - восстановитель, окислитель и продукты их взаимодействия - сильные электролиты, то они записываются в виде ионов; а слабые электролиты, газы и вещества, выпадающие в осадок - в виде молекул. Продукты реакции устанавливаются на основании известных свойств элементов.

2. Если исходное вещество содержит больше атомов кислорода, чем продукт реакции, то освобождающийся кислород связывается в кислых растворах ионами Н+ с образованием молекул воды, а в нейтральных и щелочных растворах - молекулами воды с образованием гидроксид-ионов, например:

MnO4- + 8H+ + 5 e  Mn2+ +4H2o,

MnO4-+2H2O+3 e  MnO2 + 4OH.

3. Если исходное вещество содержит меньше атомов кислорода, чем продукт реакции, то недостаток их восполняется в кислых и нейтральных растворах за счет молекул воды, а в щелочных - за счет гидроксид-ионов. При этом образуются ионы водорода (в кислых и нейтральных растворах) и молекулы воды (в щелочной среде), например:

SO32-+H2O - 2 e  SO42-+2H+ ,

SO32- + 2OH- - 2 e  SO42-+H2O.

4. Коэффициенты для полуреакций окисления и восстановления подбираются таким образом, чтобы количество отданных и принятых электронов было одинаково.

5. Для каждой из полуреакций и суммарного уравнения ОВР должны выполняться правила сохранения материального баланса и баланса электрических зарядов - количество атомов каждого вида и суммарный заряд в левой и правой частях уравнений должны быть одинаковы.

Применение перечисленных правил поясним на примере. Если через подкисленный серной кислотой раствор перманганата калия KMnO4 пропускать сероводород H2S, то малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образования элементарной серы: H2S  S. Для уравнивания зарядов от молекулы сероводорода надо отнять два электрона (что полностью соответствует изменению степени окисления серы с -2 до 0) и в итоге получаем первую полуреакцию - процесса окисления восстановителя - сероводорода:

Н2S - 2 e  S + 2H+ .

Обесцвечивание раствора перманганата калия связано с переходом иона MnO4- (имеет малиновую окраску) в ион Mn2+ (почти бесцветный), что можно выразить схемой MnO4-  Mn2+. В кислом растворе кислород, входящий в состав ионов MnO4- , связывается ионами водорода Н+ в молекулы воды (на 4 атома кислорода в ионе MnO4- необходимо 8 Н+), что может быть записано в виде схемы:

MnO4- + 8 Н+  Mn2++4H2O .

Чтобы уравнять заряды (заряды исходных веществ - (+7), конечных - (+2)), необходимо к исходным веществам прибавить 5 электронов (что полностью согласуется с уменьшением степени окисления у марганца с (+7) до (+2)):

MnO4-+8H++5 e  Mn2++4H2O.

Это есть вторая полуреакция - процесс восстановления окислителя - MnO4-.

Для составления общего уравнения реакции надо уравнения полуреакций почленно суммировать, предварительно уравняв число отданных и полученных электронов. Для этого определяют соответствующие множители (в приведенном примере 5 и 2), на которые умножаются полуреакции. Проведенные операции записываются следующим образом:

H2S - 2 e  S + 2H+ 5

MnO4- + 8H+ + 5 e  Mn2++4H2O 2

5H2S + 2MnO4- + 16H+  5S +10H+ +2Mn2++8H2O

После приведения подобных членов (ионов Н+) окончательно получаем

5H2S + 2MnO4- +6H+  5S + 2Mn2++8H2O.

Проверяем материальный баланс; баланс зарядов в левой и правой частях уравнения: -2+(+6) = 2(2+).

Методом полуреакций составляется сокращенное ионное уравнение реакции. Чтобы от ионного уравнения перейти к молекулярному, необходимо в левой части ионного уравнения к каждому аниону и катиону подобрать соответствующий катион и анион. Затем такие же ионы в таком же количестве записываются в правой части уравнения, после чего ионы объединяются в молекулы, и окончательно получаем

2K++3SO42-+ 5H2S+2MnO4- +6H+  2K++3SO42-+ 5S + 2Mn2++8H2O,

5H2S + 2KMnO4+3H2SO4  5S+2MnSO4 + K2SO4 + 8H2O.

Реакции окисления-восстановления могут протекать в различных средах: в кислой (избыток Н+ - ионов), нейтральной (Н2О) и щелочной (избыток гидроксид-ионов ОН-). В зависимости от среды может изменяться характер протекания реакции между одними и теми же веществами; среда также влияет на изменение степени окисления атомов. Ниже приводятся схемы восстановления в зависимости от среды раствора наиболее типичных окислителей: KMnO4, H2O2, K2Cr2O7.

Перманганат калия в водных растворах полностью диссоциирует с образованием перманганат-иона MnO4-, который обуславливает окислительные свойства и малиновый цвет растворов. В кислой среде в присутствии восстановителей протекает реакция

MnO4-+8H++5 e-  Mn2++4H2O,

раствор становится бесцветным. В нейтральной среде протекает другая реакция

MnO4-+ 2Н2О + 3 е-  MnO2 + 4OH- ,

сопровождающаяся выделением бурого осадка MnO2. В нейтральной среде малиновый цвет меняется на светло-зеленый, обусловленный образованием манганат-ионов:

MnO4-+ е-  MnO42-.

Обычно для создания в растворе кислой среды используют серную кислоту. Азотную и соляную кислоты применять не рекомендуется: азотная кислота сама является окислителем, соляная кислота способна окисляться. Для создания щелочной среды применяют растворы КОН и NaOH.

Пероксид водорода восстанавливается также по-разному в зависимости от среды:

кислая H2O2 + 2H+ + 2 e-  2H2O ,

щелочная и нейтральная H2O2 + 2 e-  2OH- .

Однако с очень сильными окислителями (KMnO4, K2Cr2O7, (NH4)2S2O8) пероксид водорода выступает как восстановитель:

Н2О2 - 2 е-  О2 + 2Н+ .

Хром в своих соединениях имеет устойчивые степени окисления +6 и +3. В первом случае соединения хрома проявляют свойства окислителей, во втором - восстановителей. В зависимости от среды для соединений Cr (VI) имеет место равновесие :

2CrO42- + 2H+  Cr2O72-+H2O; Cr2O72- +2OH-  2CrO42- + H2O .

В кислой среде ионы Сr2O72- - сильные окислители, они восстанавливаются до соединений Cr3+:

Сr2O72- + 14H++6 e-  2Cr3++7H2O.

В щелочной среде ионы Cr(OH)63- окисляются до ионов CrO42-:

Cr(OH)63- + 2OH- - 3 e-  CrO42- + 4H2O.

Достоинство метода полуреакций по сравнению с методом электронного баланса состоит в том, что в нем применяются не гипотетические ионы, а реально существующие. При методе полуреакций не нужно знать степеней окисления атомов, и видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества: они появляются в уравнении реакции при выводе его.

ВНИМАНИЕ: основная ошибка, приводящая к неверным результатам, - проставление в полуреакциях не зарядов частиц, а степеней окисления атомов.