Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Козлов А.В. Диплом ВКР 5 курс.doc
Скачиваний:
52
Добавлен:
16.11.2019
Размер:
8.96 Mб
Скачать

1.3 Факторы, влияющие на надежность магистрального трубопровода

Надежность трубопроводов во многом определяет непрерывность функционирования большинства отраслей народного хозяйства. К сожалению, как показывают статистические данные, на трубопроводах нередко имеют место механические отказы. Отказы происходят, в основном, из–за коррозионного износа и старения трубопроводов, несовершенства проектных решений, заводского брака труб, брака строительно-монтажных и ремонтных работ, по вине производственного персонала и по другим причинам. Отказы на трубопроводах, связанные с разрывом стенок труб, происходят относительно редко, но могут наносить огромный ущерб, связанный с загрязнением окружающей среды, возможными взрывами и пожарами, человеческими жертвами, нарушением снабжения нефтью, газом и нефтепродуктами потребителей. Поэтому сохранение работоспособности линейной части МТ является одной из основных проблем трубопроводного транспорта. В этом плане большое значение имеет своевременное и качественное проведение профилактических мероприятий, направленных на сохранение, восстановление и повышение несущей способности линейной части трубопроводов.

В настоящее время для обеспечения надежной работы трубопровода, имеющего участки с уменьшенной несущей способностью, применяют ряд методов: перекачку продукта производят при давлении ниже проектного, на отдельных участках или по всей длине трубопровода прокладывают лупинги, производят ремонт стенок трубопровода путем заплавки коррозионных язв, приваркой усиливающих накладных элементов. Если коррозионный износ превышает предельную величину, то трубы или их участки вырезают и заменяют на новые. Иногда трубопровод полностью демонтируют, производят тщательную отбраковку с целью выявления качественных труб и повторного их использования. Эти методы требуют больших затрат, Группа 907 связанных с остановкой перекачки, опорожнением трубопровода, выходом перекачиваемого продукта на землю и значительной его потерей. Возросшие требования к охране окружающей среды и к методам безопасного ведения ремонтных работ делают эту проблему особенно актуальной. Известным и широко апробированным методом повышения надежности МТ является гидравлическое испытание повышенным давлением. Линейная часть и лупинги должны подвергаться циклическому гидравлическому испытанию на прочность и проверке на герметичность. При этом, количество циклов должно быть не менее трех, а величины испытательного давления в каждом цикле должны изменяться от давления, вызывающего в металле трубы напряжение 0,9–0,75 предела текучести. Участок МТ, выдержавший испытательное давление, считается пригодным к дальнейшей эксплуатации. Однако сроки последующей эксплуатации или переиспытаний назначаются, в основном, экспертным путем без учета фактического состояния металла и реальных условий эксплуатации.

Испытания трубопроводов следует рассматривать как метод активной диагностики и обеспечения фактического запаса прочности, равного 1,1...1,5. При определенных условиях эти запасы прочности могут обеспечивать безопасность трубопроводов. Однако действующие в настоящее время нормативные документы (НД) не дают ответа на основной вопрос количественного установления безопасного срока службы МТ, испытанных при конкретно заданных режимах.

Недостаточное совершенство НД по нормированию остаточного ресурса трубопровода объясняется тем, что они базируются, в основном, на критериях статической прочности бездефектного металла. Между тем, при эксплуатации в металле труб происходят необратимые повреждения, снижающие ресурс трубопроводов. Процессы накопления повреждений в металле усиливаются в зонах концентрации напряжений (дефектах).

Следует отметить, что в ряде случаев диагностическая информация, необходимая для количественной оценки остаточного ресурса МТ, является Группа 927 недостаточной или необъективной. В этом случае целесообразно использовать априорную информацию. В последнее время в литературе появилось достаточно большое количество научно-технических работ, посвященных оценке остаточного ресурса трубопровода. Это, очевидно, объясняется возрастным составом МТ и повышением требований к экологической безопасности объектов трубопроводного транспорта.

Анализ причин и характера разрушения трубопровода показал, что при их проектировании предъявляются преимущественно традиционные требования к прочности, ресурсу и надежности. Основными материалами труб остаются низкоуглеродистые и низколегированные стали. При этом в качестве основных расчетных (аттестационных) характеристик механических свойств металла труб принимаются пределы текучести, и прочности, ударная вязкость, относительное удлинение, отношение предела текучести и прочности.

В общем случае оценка остаточного ресурса трубопроводов может включать комплекс трудоемких работ по анализу технической документации, функциональной диагностике, экспертному обследованию, анализу механизмов повреждения и выявлению определяющих параметров технического состояния, уточнению параметров технического состояния, напряженно-деформированного состояния и характеристик металла, выбору критериев повреждаемости и др. Этот комплекс работ соответствует требованиям методических указаний по определению остаточного ресурса потенциально опасных объектов, подведомственных Госгортехнадзору России. Анализ надежности МТ показал, что основными причинами их отказов являются малоцикловая усталость, коррозионный износ, коррозионное растрескивание и деформационное старение металла. Необходимо подчеркнуть, что при анализе механизмов коррозионного износа следует учитывать усиление коррозионных процессов от действия механических напряжений (механохимическая коррозия).

Группа 947 Указанные факторы разрушений предопределяют разработку методов расчета остаточного ресурса по критериям малоцикловой усталости, коррозионного износа, коррозионного растрескивания и старения. Так как, деформационное старение в расчетах остаточного ресурса должно учитываться оценкой степени снижения вязкопластических характеристик. Еще в период 1961–1966 гг. в США были проведены испытания 24 тыс. км магистральных трубопроводов повышенным давлением, вызвавшим напряжения в теле труб, близкие к действительному пределу текучести металла. Оценка этого результата за 6–15 лет последующей эксплуатации позволила сделать вывод, что лучше подвергнуть трубопровод высокому давлению при испытании, в результате чего дефектные места либо разрушатся, либо несколько упрочнятся, чем подвергать трубопровод опасности аварии при эксплуатации.

Развитие на Севере нефтяной и газовой промышленности, транспортных трубопроводов, изготовление землеройных механизмов для работы в зонах с низкими температурами, а также химическая промышленность, нуждаются в хладостойкой листовой стали. Использование таких сталей делает конструкции надежней, расход материала уменьшается, а следовательно экономятся и денежные средства. На Томской железной дороге установили, что в январе – феврале месяце по сравнению с июлем – сентябрем выход рельс из строя по трещинам возрастал в 7–15 раз. Так как температуры от –30 до –50 градусов встречаются на большей территории России, то проблема использования и изготовления подходящих сталей очень актуальна и важна. Для большинства металлов способность к пластической деформации в значительной степени зависит от температуры. С понижением температуры эта способность для большинства металлов и сплавов уменьшается. При критических температурах резко возрастает сопротивление сдвигу, металл переходит в хрупкое состояние и разрушается без признаков пластической деформации. Сопротивление такому разрушению называется хрупкой прочностью, а свойство металлов хрупко разрушаться со снижением Группа 967 температуры называется хладноломкостью. Обратное понятие хладноломкости – хладностойкость. Результаты исследований показали, что металлы с объемноцентрированной кубической решеткой (железо, хром, вольфрам), а также некоторые металлы с гексагональной решеткой (титан, цинк, кадмий) при снижении температуры быстро охрупчиваются. У металлов с более плотно упакованной решеткой гранецентрированного куба (медь, никель, алюминий, магний, свинец) с понижением температуры вязкость сохраняется, а иногда даже повышается. Подобные закономерности имеют и многокомпонентные сплавы, имеющие соответствующие кристаллические решетки. Явление охрупчивания с точки зрения природы кристаллических решеток объясняется отсутствием плоскостей скольжения у металлов с объемноцентрированной кубической и гексагональной решеткой.

Трещины образуются в местах встречи или пересечения полос двух систем скольжения. При этом возможность хрупкого разрушения тем больше, чем сильнее препятствия, тормозящие свободное передвижение групп дислокаций. Если скорость распространения микротрещин превысит скорость пластической деформации, то наступит хрупкое разрушение. Пути сдвигов примерно равны диаметру зерна, поэтому измельчение зерна способствует увеличению интервала пластического состояния. Поэтому углеродистые и легированные перлитные и мартенситные стали после закалки с отпуском при наличии очень мелкого зерна имеют более низкие критические температуры хрупкости.

Известны два типа хрупкого разрушения: транскристаллитное и интеркристаллитное. Чистые металлы обычно разрушаются по зерну. Межзеренному разрушению благоприятствует наличие включений по границам зерен. Сплавы разрушаются по зерну и между зернами; сплавы с гексагональной решеткой, преимущественно только по зерну; сплавы с гранецентрированной кубической решеткой, только между зернами. С увеличением общего периметра границ зерен межзеренное вещество распределяется в форме более тонких прерывистых пленок, что увеличивает Группа 987 межкристаллические связи и затрудняет распространение микротрещин за счет увеличения путей сдвига. Границы зерен характеризуются значительными нарушениями кристаллической решетки, вредное влияние которых существенно ослабляется с повышением гранулярности структуры, за счет дробления путей сдвига, уменьшения длины микротрещин и соответствующего увеличения интервала пластического состояния. Таким образом, прочность металлов и их сопротивляемость хрупкому разрушению в значительной степени обуславливаются состоянием границ зерен. Еще больше влияют на величину хрупкой прочности неметаллические включения, располагающиеся как по границам зерен, так и внутри них. Но при этом включения рассматриваются как концентраторы напряжений, из–за которых распространяются трещины разрушения. Но влияние природы и формы включений на хладноломкость изучено не в полной мере.

Большое влияние на хладностойкость оказывают микродефекты структуры металлов, являющиеся своеобразными концентраторами напряжений. Особенно опасны дефекты типа усадочных раковин, микропористости и газовых пузырей, нарушающие однородность и сплошность структуры. Поэтому плотность металла является объективным показателем для оценки его хладноломкости. Несмотря на достижения в развитии теоретических представлений о природе хладноломкости металлов, общей теории, объясняющей все многообразие этого явления, до сих пор не предложено. Теоретические представления основаны на опытных данных многочисленных исследований, рассматривающих влияние отдельных параметров состояния и свойств металла на критическую температуру его перехода в хрупкое состояние. Важным является признание необходимости повышения уровня хрупкой прочности металлов как основного фактора, определяющего хладноломкость.

В качестве независимой переменной при определении металла устойчивости к хрупкости выбирают температуру, определяющую критический интервал хрупкости. Известный метод испытания ударной Группа 1007 вязкости является весьма чувствительным и удобным способом оценки степени хладноломкости стали. Надежность и долговечность изделия в значительной степени определяется его склонностью к хрупкому разрушению, которому способствуют не только низкие температуры, но и такие параметры, как усиление концентрации напряжения, увеличение скорости деформации и другие. Опыт показывает, что сталь с более низкой температурой хрупкости лучше сопротивляется высоким напряжениям и увеличенным скоростям нагружения и дольше сохраняет свою пластичность. Следовательно, метод испытания ударной вязкости, выявляющий критический интервал хрупкости, носит универсальный характер и характеризует склонность стали к хрупкому разрушению. Для оценки хладноломкости стали также используют фрактографический метод контроля, основанный на измерении доли волокнистого и кристаллического строения ударных образцов. В качестве критерия оценки хрупкости принимают выраженное в процентах соотношение площадей волокнистых и кристаллических участков излома. Обычно за критерий вязкости принимают критическую температуру ( ), при которой доля вязкого излома составляет 50%. Чем ниже , тем выше надежность стали при низких температурах.

Опыт показывает, что детали, изготовленные из стали с более низкой температурой хрупкости, способны оставаться вязкими при более высоких скоростях напряжения в более острых в надрезах и выточках. В подобной стали распространение микротрещин существенно затрудняется.

Все указанные факторы влияют самостоятельно и независимо друг от друга и учесть долю влияния каждого весьма сложно. Для решения этих задач прибегают к натурным испытаниям изделий.