Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ по ферозондовому контролю.DOC
Скачиваний:
27
Добавлен:
14.11.2019
Размер:
2.3 Mб
Скачать

1.4 Магнитное поле рассеяния дефектов

Магнитное поле дефектной детали имеет свои особенности. Возьмем намагниченное стальное кольцо (деталь) с узкой щелью. Эту щель можно рассматривать как дефект детали. Если накрыть кольцо листом бумаги с насыпанным магнитным порошком, можно увидеть картину, сходную с приведенной на рисунке 1.2. Лист бумаги расположен вне кольца, а между тем частицы порошка выстраиваются вдоль определенных линий. Таким образом, силовые линии магнитного поля частично проходят вне детали, обтекая дефект. Эта часть магнитного поля называется полем рассеяния дефекта.

На рисунке 1.8 показана длинная трещина в детали, расположенная перпендикулярно силовым линиям магнитного поля, и картина силовых линий вблизи дефекта.

Рисунок 1.8 — Обтекание силовыми линиями поверхностной трещины

Видно, что силовые линии магнитного поля обтекают трещину внутри детали и вне ее.

Формирование магнитного поля рассеяния подповерхностным дефектом можно пояснить с помощью рисунка 1.9, где изображен участок намагниченной детали. Силовые линии магнитной индукции относятся к одному из трех участков поперечного сечения: над дефектом, в зоне дефекта и под дефектом. Произведение магнитной индукции на площадь поперечного сечения определяет магнитный поток. Составляющие полного магнитного потока на этих участках обозначены как Φ1,.., Φ3.

Рисунок 1.9 — Поле рассеяния подповерхностного дефекта

Часть магнитного потока Ф2, будет перетекать выше и ниже сечения S2. Поэтому магнитные потоки в сечениях S1 и S3 будут больше, чем у бездефектной детали. То же самое можно сказать и о магнитной индукции. Другой важной особенностью силовых линий магнитной индукции является их искривление над и под дефектом. В результате часть силовых линий выходит из детали, создавая магнитное поле рассеяния дефекта.

Количественно магнитное поле рассеяния можно оценить по магнитному потоку, выходящему из детали, который называют потоком рассеяния. Магнитный поток рассеяния тем больше, чем больше магнитный поток Φ2 в сечении S2. Площадь поперечного сечения S2 пропорциональна косинусу угла , показанному на рисунке 1.9. При  = 90° эта площадь равна нулю, при =0° она имеет наибольшее значение.

Таким образом, для выявления дефектов необходимо, чтобы силовые линии магнитной индукции в зоне контроля детали были бы перпендикулярны плоскости предполагаемого дефекта.

Распределение магнитного потока по сечению дефектной детали аналогично распределению потока воды в русле с преградой. Высота волны в зоне полностью погруженной преграды будет тем больше, чем ближе гребень преграды к поверхности воды. Аналогично этому подповерхностный дефект детали тем легче обнаружить, чем меньше глубина его залегания.

1.5 Обнаружение дефектов

Для обнаружения дефектов требуется прибор, позволяющий определить характеристики поля рассеяния дефекта. Это магнитное поле можно определить по составляющим Нх, Ну , Нz.

Однако поля рассеяния могут быть вызваны не только дефектом, но и другими факторами: структурной неоднородностью металла, резким изменением сечения (в деталях сложной формы), механической обработкой, ударами, шероховатостью поверхности и т. д. Поэтому анализ зависимости даже одной проекции (например, Hz) от пространственной координаты (x или y) может оказаться непростой задачей.

Рассмотрим магнитное поле рассеяния вблизи дефекта (рисунок 1.10). Здесь показана идеализированная бесконечно длинная трещина с ровными краями. Она вытянута вдоль оси y, которая направлена на рисунке к нам. Цифрами 1, 2, 3, 4 показано как меняется величина и направление вектора напряженности магнитного поля при приближении к трещине слева.

Рисунок 1.10 –– Магнитное поле рассеяния вблизи дефекта

Измерение магнитного поля происходит на некотором расстоянии от поверхности детали. Траектория, по которой проводятся измерения, изображена пунктиром. Величины и направления векторов справа от трещины можно построить аналогичным образом (или воспользоваться симметрией рисунка). Правее картины поля рассеяния показан пример пространственного положения вектора H и двух его составляющих Hx и Hz. Графики зависимостей проекций Hx и Hz поля рассеяния от координаты x показаны ниже.

Казалось бы, отыскивая экстремум Hx или ноль Hz, можно найти дефект. Но как уже отмечалось выше, поля рассеяния образуются не только от дефектов, но и от структурных неоднородностей металла, от следов механических воздействий и т. д.

Рассмотрим упрощенную картину формирования полей рассеяния на простой детали (рисунок 1.11) похожей на ту, что была изображена на рисунке 1.8, и графики зависимостей проекций Hz, Hx от координаты x (дефект вытянут вдоль оси y).

По графикам зависимостей Hx и Hz от x обнаружить дефект очень непросто, так как величины экстремумов Hx и Hz над дефектом и над неоднородностями соизмеримы.

Выход был найден, когда обнаружили, что в области дефекта максимальная скорость изменения (крутизна) напряженности магнитного поля какой-то координаты больше, чем другие максимумы.

Рисунок 1.11 показывает, что максимальная крутизна графика Hz(x) между точками x1 и x2 (т.е. в зоне расположения дефекта) гораздо больше, чем в других местах.

Рисунок 1.11 — Силовые линии магнитного поля дефекта и неоднородностей металла детали.

Таким образом, прибор должен измерять не проекцию напряженности поля, а «скорость» ее изменения, т.е. отношение разности проекций в двух соседних точках над поверхностью детали к расстоянию между этими точками:

где Hz(x1), Hz(x2) — значения проекции вектора H на ось z в точках x1, x2 (левее и правее дефекта), Gz(x) принято называть градиентом напряженности магнитного поля.

Зависимость Gz(x) показана на рисунке 1.11. Расстояние x = x2 x1 между точками, в которых измеряются проекции вектора H на ось z, выбирается с учетом размеров поля рассеяния дефекта.

Как следует из рисунка 1.11, и это хорошо согласуется с практикой, значение градиента над дефектом существенно больше его значения над неоднородностями металла детали. Именно это позволяет достоверно регистрировать дефект по превышению градиентом порогового значения (рисунок 1.11).

Выбирая необходимое значение порога, можно свести ошибки контроля к минимальным значениям.