Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_voprosy_vse.doc
Скачиваний:
15
Добавлен:
26.09.2019
Размер:
1.21 Mб
Скачать
  1. Гравитационная и инертная массы.

Понятие «масса» фигурирует в двух разных законах – во втором законе Ньютона и в законе всемирного тяготения. 

В первом случае она характеризует инертные свойства тела, во втором – гравитационные свойства, то есть способность тел притягиваться друг к другу. В связи с этим возникает вопрос, не следует ли различать инертную массу min и массу гравитационную (или тяготеющую) mg? Ответ на этот вопрос может дать только опыт.         Всякое тело вблизи поверхности Земли испытывает силу притяжения

Под действием этой силы тело приобретает ускорение:

Опыт показывает, что ускорение а для всех тел одинаково:  a = g. Следовательно, и  mg = min. Поэтому говорят просто о массе.

З-н всемирного тяготения:

Cила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:

Здесь   — гравитационная постоянная, равная 6,67 * 10-11  м³/(кг с²).

  1. Момент силы. Момент импульса. Момент силы

Сила приложенная к твердому телу, которое может вращаться вокруг некоторой точки, создает момент силы. Действие момента силы аналогично действию пары сил. Момент силы относительно некоторой точки — это векторное произведение силы на кратчайшее расстояние от этой точки до линии действия силы.

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является Ньютон-метр. Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. В простейшем случае, если сила приложена к рычагу перпендикулярно ему, момент силы определяется как произведение величины этой силы на расстояние до оси вращения рычага. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метров от его оси вращения, создаёт такой же момент, что и сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров до оси вращения. Более точно, момент силы частицы определяется как векторное произведение:

где   — сила, действующая на частицу, а   — радиус-вектор частицы.

Момент импульса

Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Определение

Момент импульса   частицы относительно некоторого начала отсчёта определяется векторным произведением её радиус-вектора и импульса:

где   — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчёта начала отсчёта,   — импульс частицы.

Для нескольких частиц момент импульса определяется как (векторная) сумма таких членов:

где   — радиус-вектор и импульс каждой частицы, входящей в систему, момент импульса которой определяется.

  1. Основные параметры и законы колебаний маятника.

Ма́ятник — система, подвешенная в поле тяжести и совершающая механические колебания. Колебания совершаются под действием силы тяжести, силы упругости и силы трения. Во многих случаях трением можно пренебречь, а от сил упругости (либо сил тяжести) абстрагироваться, заменив их связями.

Во время колебаний маятника происходят постоянные превращения энергии из одного вида в другой. Кинетическая энергия маятника превращается в потенциальную энергию (гравитационную, упругую) и обратно. Кроме того, постепенно происходит диссипация кинетической энергии в тепловую за счёт сил трения.

Одним из простейших маятников является шарик, подвешенный на нити. Идеализацией этого случая является математический маятник — механическая система, состоящая из материальной точки, подвешенной на невесомой нерастяжимой нити или на невесомомстержне в поле тяжести.

Если размерами массивного тела пренебречь нельзя, но всё еще можно не учитывать упругих колебаний тела, то можно прийти к понятию физического маятника. Физический маятник — твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной горизонтальной оси, не проходящей через центр масс этого тела.

Система из нескольких шариков, подвешенных на нитях в одной плоскости, колеблющихся в этой плоскости и соударяющихся друг с другом, называется маятником Ньютона. Здесь уже приходится учитывать упругие процессы.

Маятник Фуко — это груз, подвешенный на нити, способный изменять плоскость своих колебаний.

Ещё одним простейшим маятником является пружинный маятник. Пружинный маятник — это груз, подвешенный на пружине и способный колебаться вдоль вертикальной оси.

Крутильный маятник — механическая система, представляющая собой тело, подвешенное в поле тяжести на тонкой нити и обладающее лишь одной степенью свободы: вращением вокруг оси, задаваемой неподвижной нитью.

Маятники используются в различных приборах, например, в часах и сейсмографах.

Маятники облегчают изучение колебаний, так как наглядно демонстрируют их свойства.

Математи́ческий ма́ятник — осциллятор, представляющий собоймеханическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебанийматематического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит[1] от амплитуды и массы маятника.

Плоский математический маятник со стержнем — система с однойстепенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.

При малых колебаниях физический маятник колеблется так же, как математический с приведённой длиной.

Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида

где   ― положительная константа, определяемая исключительно из параметров маятника. Неизвестная функция   ― это угол отклонения маятника в момент   от нижнего положения равновесия, выраженный в радианах;  , где   ― длина подвеса,   ― ускорение свободного падения. Уравнение малых колебаний маятника около нижнего положения равновесия (т. н. гармоническое уравнение) имеет вид:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]