Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovye_bilety_po_fizike.docx
Скачиваний:
37
Добавлен:
26.09.2019
Размер:
805.99 Кб
Скачать

21.Пружинный и математический маятники. Энергетические превращения при их колебаниях.

Существуюет системы, представляющие собой тело определенной массы, подвешенное на нити или стержне (например, качели, маятник часов, отвес). Моделью этих систем является математический маятник.

Математический маятник представляет собой тело, подвешенное на нити, размеры которого много меньше длины нити.Считается, что нить нерастяжима и не имеет массы, вся масса такого маятника сосредоточена в подвешенном к нити тела. При этом тело можно считать материальной точкой. Математический маятник совершает колебания под действием внутренних сил: силы тяжести и силы упругости. Колебания, происходящие под действием внутренних сил, называют свободными. Запишем уравнение колебаний математического маятника:

Пружинный маятник — это груз, прикрепленный к пружине. В этой модели маятника мы пренебрегаем массой пружины по сравнению с массой груза, деформацией тела по сравнению с деформацией пружины. Пружинный маятник будет совершать свободные колебания относительно положения равновесия под действием переменной силы. Соответственно в процессе движения изменяются и скорость, и ускорение аналогично тому, как это происходит с математическим маятником. Получим уравнение колебаний для пружинного маятника:

Энергетическое превращение:

, ,

Закон сохранения:

22.Свободные электромагнитные колебания в колебательном контуре. Энергетические превращения в колебательном контуре. Формула Томпсона

Электромагнитными колебаниями называют периодические изменения напряжённости электрического поля, магнитной индукции, силы тока, заряда и других характеристик электромагнитного поля. Электромагнитные колебания представляют основу электрической энергии используемой человеком. Они применяются в телевидении, а также в радио и телефонной связи. Работа мозга, сердца и мышц человека сопровождается появлением электромагнитных колебаний. Все световые явления тоже являются электромагнитными колебаниями.

Как и механические колебания, электромагнитные колебания бывают свободными или вынужденными. Свободные электромагнитные колебания можно наблюдать в схеме, состоящей из катушки и конденсатора, называемой колебательным контуром. Зарядим конденсатор С колебательного контура, сообщив его пластинам заряд q. При этом энергия электрического поля конденсатора составит . Замкнём конденсатор на катушку индуктивности L (рис. 9а), после чего конденсатор начнёт разряжаться через катушку, а заряд на его пластинах уменьшаться. Разряд конденсатора будет постепенным, а не мгновенным, так как ЭДС самоиндукции в катушке станет противодействовать нарастанию силы тока. Очевидно, что, разряжаясь через катушку, конденсатор будет терять свою энергию, однако, одновременно с уменьшением электрического поля будет расти энергия магнитного поля WM катушки, через которую течёт ток I, . Если считать, что потерь энергии в этом контуре не происходит, то полная энергия электромагнитного поля контура будет постоянна:

Из (9.1) следует, что, когда конденсатор окажется полностью разряженным (рис. 9б), сила тока в колебательном контуре достигнет максимального значения и вся энергия электрического поля конденсатора превратится в энергию магнитного поля катушки. Однако из-за явления самоиндукции ток в катушке не может уменьшиться мгновенно, и поэтому начинается перезарядка конденсатора, которая происходит, пока сила тока в контуре не станет равной нулю (рис. 9в). В этот момент времени энергия магнитного поля катушки целиком превратится в электрическую энергию конденсатора, и при этом конденсатор будет обладать тем же зарядом, что и сначала (рис. 9а), но заряды на пластинах, просто, поменяются местами. Далее конденсатор опять начнёт разряжаться, и колебательный контур вернётся в исходное состояние (рис. 9а).

Если пренебречь потерями энергии в колебательном контуре, то колебания тока в катушке и напряжения между пластинами конденсатора являются незатухающими гармоническими колебаниями, сдвинутыми по фазе p/2 (рис. 9г). Расчёты показывают, что период Т таких колебаний зависит от индуктивности катушки L и ёмкости конденсатора С следующим образом:

Формулу называют формулой Томсона в честь английского физика У. Томсона, который её впервые вывел. В действительности протекание тока в колебательном контуре всегда сопровождается потерями энергии. Одной из причин этих потерь является нагревание катушки и соединительных проводов. Поэтому со временем энергия электромагнитного поля переходит во внутреннюю энергию элементов колебательного контура, и амплитуда электромагнитных колебаний постепенно уменьшается до нуля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]