Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gotovye_bilety_po_fizike.docx
Скачиваний:
37
Добавлен:
26.09.2019
Размер:
805.99 Кб
Скачать

42.Внутренняя энергия идеального газа

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

кинетическая энергия поступательного, вращательного и колебательного движения молекул;

потенциальная энергия взаимодействия атомов и молекул;

внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела.

Рассчитать внутреннюю энергию можно только для идеального газа.

Так как в идеальном газе молекулы не взаимодействуют между собой, то потенциальная энергия их равна нулю и внутренняя энергия идеального газа представляет собой кинетическую энергию всех его молекул.

Средняя кинетическая энергия молекулы

Число молекул в газе .

Следовательно, внутренняя энергия идеального газа

Учитывая, что kNA = R — универсальная газовая постоянная, имеем — внутренняя энергия идеального газа.

В частности, для одноатомного газа .

Из этих формул видно, что внутренняя энергия идеального газа зависит только от температуры и числа молекул и не зависит ни от объема, ни от давления. Поэтому изменение внутренней энергии идеального газа определяется только изменением его температуры и не зависит от характера процесса, в котором газ переходит из одного состояния в другое:

где ΔT = T2 - T1.

43.Работа в термодинамике – ебала какая-то

Работа в термодинамике — обобщение понятия «работа в механике» (выраженного в дифференциальной форме). Обобщённые координаты в термодинамике — это внешние параметры термодинамической системы (объём, напряжённость внешние магнитное или электрические поля и т. п.), а обобщённые силы (давление и др.) — величины, зависящие не только от координат, но и от внутренних параметров системы (температуры или энтропии). Работа термодинамической системы над внешними телами заключается в изменении состояния этих тел и определяется количеством энергии, передаваемой системой внешним телам при изменении внешних параметров системы. В квазистатических (т. е. бесконечно медленных) адиабатических процесса работа равна изменению внутренней энергии системы, в квазистатических изотермических процессах — изменению энергии Гелъмголъца. В ряде случае работа может быть выражена через другие термодинамические потенциалы. В общем случае величина работы при переходе системы из начального состояния в конечное зависит от способа (пути), каким осуществляется этот переход. Это означает, что бесконечно малая (элементарная) работа системы не является полным дифференциалом какой-либо функции состояния системы; поэтому элементарная работа обозначают обычно A. Зависимость работы от пути приводит к тому, что для кругового процесса, когда система вновь возвращается в исходное состояние, работа системы может оказаться не равной нулю, что используется во всех тепловых двигателях. Примерами работы при изменении одного из внешних параметров системы могут служить:

-работа сил давления p при изменении объёма V системы δA = pdV,

-работа сил поверхностного натяжения при изменении поверхности системы δA = − σdΣ, (σ — коэфф. поверхностного натяжения, dΣ — элемент поверхности);

-работа намагничивания системы δA = − HdJ (H — напряжённость в магн. поля, J — намагниченность) и т. д. Работа системы в неравновесном (необратимом) процессе всегда выше, чем в равновесном.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]