Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л-14н.doc
Скачиваний:
2
Добавлен:
23.09.2019
Размер:
782.85 Кб
Скачать

1 Наличие обшей шины на рис. 5.2 и последующих аналогичных схемах позволяет говорить о трехполюснике. Это не оказывает влияния на уравне- ния цепи.

I2 на E1 и I1 на E2 соответственно. Уравнениям (5.7), (5,8) соответствует схема замещения, показанная на рис. 5.2, в.

Здесь необходимо отметить следующую особенность активного четырехполюсника: как правило, Y21 Y12 или Z21 Z12, Н21 ≠ ф H12. Это означает, что активные четырехполюсники необратимыи, следовательно, принцип взаимности к активным четырехполюсникам неприменим.

Взаимные проводимости или сопротивления пассивных четырех- полюсников, как известно, равны (теорема взаимности). Это позво- ляет схемы замещения, показанные, например, на рис. 5.2, а к б, упростить для пассивного четырехполюсника и привести их к виду, при котором зависимые источники отсутствуют (рис. 5.3).

При анализе радиотехнических цепей особенно часто приходится иметь дело с четырехполюсниками возбуждаемыми только со стороны входа; под выходным напряжением при этом подразумевается паде- ние напряжения на сопротивлении нагрузки

В подобных случаях нагрузочный элемент целесообразно вводить внутрь четырехполюсника.

При представлении четырехполюсника с помощью К-матрицы получается схема замещения, показанная на рис. 5.4, о, которая отличается от схемы на рис. 5.2, а только тем, что нагрузочная про- водимость Gи добавлена к Y22. Это позволяет рассматривать новый четырехполюсник как разомкнутый, у которого ток на выходе I2 = 0. Матрица параметров этого нового четырехполюсника

г де

Второе уравнение (5.1) принимает при этом вид

откуда следует важное соотношение

Исключив с помощью этого соотношения Е1 из первого уравне- ния (5,1), а также учитывая, что получим отношение токов

При использовании Z-матрицы схема замещения принимает вид, показанный на рис. 5.4, б. В данном случае выходные зажимы замк- нуты накоротко (E2 = 0), а матрица параметров

где

Второе уравнение (5.4) при этом приводит к соотношению

а первое уравнение к соотношению

где — определитель матрицы [Z]',

Н аконец, второе уравнение (5,7) при подстановке (рис. 5.4, в) дает

И сключив с помощью этого соотношения I1 из первого уравнения (5,7), получим

где

Общие уравнения (5.1), (5.4) и (5.7) можно преобразовать та- ким образом, что соответствующие им схемы замещения четырехпо- люсника будут содержать только по одному зависимому источнику.

Так, например, записав второе уравнение (5.1) в форме

приходим к схеме замещения (рис, 5.5, а), содержащей один зави- симый источник тока

Аналогично записав второе уравнение (5.4) в форме

приходим к схеме с одним зависимым источником напряжения (Z21 — Z12? I1 (рис 5.5, б).

АКТИВНЫЙ ЧЕТЫРЕХПОЛЮСНИК КАК ЛИНЕЙНЫЙ УСИЛИТЕЛЬ

Приведенные в предыдущем параграфе выражения (5.13) — (5.16), записанные в форме

можно рассматривать как коэффициенты усиления соответственно по напряжению и по току в активном четырехполюснике.

В широкополосных усилителях, как правило, усилительные приборы (транзисторы, лампы и др.) обеспечивают (при правиль- ном выборе нагрузки) выполнение следующих неравенств:

Поэтому при грубой оценке усилительной способности четырех- полюсника можно исходить из приближенных равенств.

Отсюда следует, что коэффициент усиления по мощности (выра- женной в вольтамперах)

(Здесь использованы соотношения между -параметра- ми из табл. 5.1.)

Из (5.22) очевидна решающая роль параметра У21 (соответствен- но Z21 и H21) в усилении мощности колебания в активном четырех- полюснике. Физический смысл этогопараметра раскрывается в следующих^параграфах на примерах некоторых' усилительных приборов.

При анализе активного четырех- полюсника как усилителя важное зна- чение имеют такие его параметры, как входное и выходное сопро- тивления. На рис. 5.6 представлена обобщенная схема, содержащая источ- ник сигнала Ес, активный четырехпо- люсник и сопротивление нагрузки ZH, Входное сопротивление (между зажимами 1 -1') легко опреде- лить с помощью уравнений (5.4) в сочетании с (5.14). Подставив Iа из (5.14) в первое уравнение (5.4), получим

откуда

Под выходным сопротивлением четырехполюсника подразуме- вается сопротивление между зажимами 2—2' при Еc = 0 (но с учетом

внутреннего сопротивления источника сигнала Zj). Сопротивление Zt рассматривается при этом как нагрузка.

По аналогии с (5.23) при замене Z11 на Z22 и ZH на Zi получаем

При учете внутреннего сопротивления Zt источника сигнала под коэффициентом усиления следует подразумевать отношение , Этот коэффициент можно найти с помощью соответ- ствующих формул (5.17), (5.18) добавлением , Таким образом,

При использовании У-матрицы нетрудно получить выражение

Это выражение совпадает с обычным определением передаточ- ной функции линейного четырехполюсника.

Из приведенных общих соотношений видно, что структура пере- даточной функции активного четырехполюсника и характер часто- тной зависимости этой функции определяются частотными свойст- вами параметров Z или Y. В этом отношении между линейными ак-. тивным и пассивным четырехполюсниками нет никакого различия. Задание Z (ω) и У (ω) однозначно определяет и временные характе- ристики линейной активной цепи: импульсную характеристику и переходную функцию.

Определяемая формулами (5.17), (5.18) безразмерная, в общем случае комплексная функция является важнейшей характеристикой четырехполюсника. Она определяется в стационарном режиме при гармоническом возбуждении четырехполюсника.

Передаточную функцию часто удобно представлять в форме

Модуль К (ω) иногда называют .амплитудно-частот- ной или просто частотной характеристикой четырехполюсника. Аргумент φ(ω) коэффициента передачи называют ф а з о - частотной (или просто фазовой) характеристикой четырехполюсника.

Для активных линейных цепей, как и для пассивных, под импульсной характеристикой цепи g (t) подразумевается отклик, ре- акция цепи на воздействие, имеющее вид единичного импульса (дельта-функции). Связь между нетрудно установить

с помощью интеграла Фурье.

Если на входе четырехполюсника действует единичный импульс э. д. с, обладающий спектральной плотностью, равной единице для всех частот, то спектральная плотность выходного напряжения равна просто . Следовательно, отклик на единичный импульс,

т. е. импульсная характеристика цепи, легко определяется с по- мощью обратного преобразования Фурье [см, (2,49)], примененного к передаточной функции

В дальнейшем импульсную характеристику будем обозначать функцией g (t), под которой можно подразумевать не только напря- жение, но и любую другую электрическую величину, являющуюся откликом на воздействие в виде дельта-функции.

Если передаточная функция задана в виде функции К (р), т. е. в виде преобразования Лапласа от функции g (t), то выражение (5.28) можно записать1 в форме обратного преобразования Лапласа

Переходная функция цепи h (t) представляет собой отклик, ре- акцию цепи на воздействие, имеющее вид «единичного скачка». Так как такое воздействие является интегралом от единичного им- пульса (т. е. дельта-функции), то и между h (t) и g (t) существует интегральное соотношение '

В последующих главах при анализе передачи сигналов через радиоцепи чаще всего будет применяться импульсная характеристика g (t),

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]