Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ ПО ВЫШКЕ.docx
Скачиваний:
6
Добавлен:
22.09.2019
Размер:
850.09 Кб
Скачать

Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А

 = det (ai j)

и n вспомогательных определителейi (i= ), которые получаются из определителя  заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

  x i =  i (i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

x i =  i / .

Если главный определитель системы  и все вспомогательные определители  i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы  = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Пример 1.14. Решить методом Крамера систему уравнений:

x1 + x2 + x3 + x4 = 5, x1 + 2x2 - x3 + 4x4 = -2, 2x1 - 3x2 - x3 - 5x4 = -2, 3x1 + x2 +2x3 + 11 x4 = 0.

Решение. Главный определитель этой системы  = = -142  0, значит, система имеет единственное решение. Вычислим вспомогательные определители  i (i= ), получающиеся из определителя  путем замены в нем столбца, состоящего из коэффициентов при xi, столбцом из свободных членов:  1 = = - 142,  2 = = - 284,  3 = = - 426,

4 = = 142. Отсюда x1 =  1/ = 1, x2 =  2/ = 2, x3 =  3/ = 3, x4 =  4/ = -1, решение системы - вектор С=(1, 2, 3, -1)T.

  1. Основные понятия систем линейных уравнений. Метод гаусса.

СМОТРИ ВЫШЕ.

Метод Гаусса — Жордана (метод полного исключения неизвестных) — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса.

Алгоритм

  1. Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.

  2. Если самое верхнее число в этом столбце есть ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.

  3. Все элементы первой строки делят на верхний элемент выбранного столбца.

  4. Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.

  5. Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.

  6. После повторения этой процедуры   раз получают верхнюю треугольную матрицу

  7. Вычитаем из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.

  8. Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

  9. Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.