Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Электрический заряд и его свойства (Восстанов...docx
Скачиваний:
63
Добавлен:
22.09.2019
Размер:
746.46 Кб
Скачать

14. Энергия системы точечных зарядов. Энергия заряженного проводника. Энергия эл. Поля. Плотность энергии эл. Поля.

Потенциальную энергию взаимодействия  двух точечных зарядов q1 и q2, находящихся в вакууме на расстоянии r12 друг от друга можно вычислить по: 

 

 Рассмотрим систему, состоящую из N точечных зарядов: q1, q2,..., qn.

Энергия взаимодействия такой системы равна сумме энергий взаимодействия зарядов взятых попарно:

 

Как известно, заряд сосредоточивается на поверхности проводника, причем поверхность проводника эквипотенциальна. Разбивая эту поверхность на маленькие участки, каждый из которых имеет заряд Δq, и учитывая, что потенциал в месте расположения каждого из зарядов одинаков, имеем

(6.7)

Так как емкость проводника C=q/φ , то выражение (6.7) может быть также представлено, как

(6.8)

Как известно («Физика 9», § 55), чтобы зарядить конденсатор, необходимо совершить некоторую работу. Эта работа требуется для преодоления сил электростатического притяжения, возникающих при разделении положительных и отрицательных зарядов. За счет совершенной работы в конденсаторе запасается потенциальная электростатическая энергия

 , (1)

где U — разность потенциалов между обкладками, С — емкость конденсатора, Q — заряд на его обкладках.

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно, 

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w. Тогда объемная плотность энергии электрического поля равна 

C учетом соотношения  можно записать 

В изотропном диэлектрике направления векторов D и E совпадают и  Подставим выражение  , получим 

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ. В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов qi на величину dri, составляет 

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р. Следовательно,  . Вектор P связан с вектором E соотношением  . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика .

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V. Для этого нужно вычислить интеграл: