Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Электрический заряд и его свойства (Восстанов...docx
Скачиваний:
61
Добавлен:
22.09.2019
Размер:
746.46 Кб
Скачать

19.Вывод закона Джоуля-Ленца. Недостатки классической теории.

К концу свободного пробега электрон приобретает скорость   , и, следовательно, дополнительную кинетическую энергию, средняя величина которой

Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию   . Следовательно, в единице объема за единицу времени должно выделяться тепло

где n - число электронов проводимости в единице объема. Величина   есть не что иное, как удельная мощность тока. Множитель при   совпадает со значением   (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.

Теоретические результаты, получаемые по уравнению Видемана-Франца, хорошо согласуются с экспериментальными. Однако позднее выяснилось, что это совпадение оказалось случайным. В целях корректировки вышеуказанного уравнения Лоренц применил к электронному газу статистику Максвелла-Больцмана, позволяющую учитывать распределение электронов по скоростям, и пришел к результататам, резко отличавшихся от опытных. Т.е. классическая теория дает только теоретическое обоснование закона В-Ф.

20. Правила Кирхгофа. Их применение в расчета сопротивления проводников. Первый закон

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит   узлов, то она описывается   уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений 

для переменных напряжений 

---------------------------------------------------------------------------------------------------------------------

21. Магнитное поле. Вектор магнитной индукции. Напряженность магнитного поля. Закон Био-Савара-Лапласса.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Вектор  магнитной индукции.

Вектор  магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика: если направление поступательного движения буравчика (винта с правой нарезкой) совпадает с направлением тока, то направление вращения ручки буравчика покажет направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линиям.

На практике удобно пользоваться следующим правилом: если большой палец правой руки направить по току, то направление обхвата тока остальными пальцами совпадет с направлением линий магнитной индукции.

 

Модуль вектора магнитной индукции

Магнитная индукция  В зависит от I и r, где r — расстояние от проводника с током  до исследуемой точки. Если расстояние от проводника много меньше его длины (т. е. рассматривать модель бесконечно длинного проводника), то ,

 

где k — коэффициент пропорциональности. Подставляя эту формулу в уравнение для силы взаимодействия двух проводников с током, получим F=B .I.ℓ.

Отсюда   .

 

Таким образом, модуль вектора магнитной индукции  есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Единица измерения в СИ - тесла (Тл). Единица названа в честь сербского электротехника Н. Тесла.

1)Закон Био-Савара-Лапласса. Напряженность магнитного поля. Магнитное поле постоянных токов различ­ной формы изучалось французскими уче­ными Ж. Био (1774—1862) и Ф. Саваром (1791 —1841). Результаты этих опытов бы­ли обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био — Савара — Лапласа для проводника с током I, элемент которого dl создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде

г де dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r — радиус-вектор,

проведенный из элемента dl проводника в точку А поля, r — модуль радиуса-векто­ра г. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в ко­торой они лежат, и совпадает с каса­тельной к линии магнитной индукции. Это направление может быть найдено по пра­вилу нахождения линий магнитной индук­ции (правилу правого винта): направле­ние вращения головки винта дает направ­ление dB, если поступательное движение винта соответствует направлению тока в элементе.

Модуль вектора dB определяется вы­ражением

где а — угол между векторами dl и г.