Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Электрический заряд и его свойства (Восстанов...docx
Скачиваний:
61
Добавлен:
22.09.2019
Размер:
746.46 Кб
Скачать

27. Магнитный поток. Теорема Гаусса для магнитного поля. Работа, совершаемая при перемещение проводника и рамки с током в магнитном поле.

Магни́тный пото́к — поток   как интеграл вектора магнитной индукции   через конечную поверхность  . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где   — единичный векторнормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

Теорема Гаусса для магнитной индукции

В соответствии с теоремой Гаусса для магнитной индукции поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

Или, в дифференциальной форме — дивергенция магнитного поля равна нулю:

Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.

      На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:

Пусть проводник l переместится параллельно самому себе на расстояние  dx. При этом совершится работа:

      Итак, Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.

Тогда общая работа по перемещению контура

  или

 

,

 (2.9.2)

 

здесь    – это изменение магнитного потока, сцепленного с контуром.

      Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока,сцепленного с этим контуром.

28. Сила Лоренца, ее характеристики. Формула Лоренца. Движение заряженных частиц в магнитном и электрическом поле.

Сила Лоренца — сила, с которой, в рамках классической физикиэлектромагнитное поле действует на точечную заряженнуючастицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью   заряд   лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического   имагнитного   полей. Выражается в СИ как:

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке: F=qE. Эта сила сообщает ускорение  , где m — масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением  , если заряд частицы положителен (q > 0), и будет противоположно  , если заряд отрицателен (q<0).

Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась   или ее начальная скорость сонаправлена с ускорением  , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если  , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый О < α < 90° (или тупой), то заряженная частица в таком электростатическом поле будет двигаться по параболе.

Во всех случаях при движении заряженной частицы в электростатическом поле будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

Существенное отличие магнитного поля от электростатического состоит, во-первых, в том, что магнитное поле не действует на покоящуюся заряженную частицу. Магнитное поле действует только на движущиеся в поле заряженные частицы. Во-вторых, сила Лоренца, действующая на заряженные частицы в магнитном поле, всегда перпендикулярна скорости их движения. Поэтому модуль скорости в магнитном поле не изменяется. Не изменяется, следовательно, и кинетическая энергия частицы. Вид траектории заряженной частицы в магнитном поле зависит от угла между скоростью влетающей в поле частицы и магнитной индукцией. Возможны три различных случая.

1. Заряженная частица влетает в магнитное поле со скоростью  , направленной вдоль поля   или противоположно направлению магнитной индукции поля  . В этих случаях сила Лоренна   и частица будет продолжать двигаться равномерно прямолинейно.

2. Заряженная частица движется перпендикулярно линиям магнитной индукции (рис. 2), тогда сила Лоренца  , а следовательно, и сообщаемое ускорение будут постоянны по модулю и перпендикулярны к скорости частицы. В результате частица будет двигаться по окружности, радиус которой можно найти на основании второго закона Ньютона:

Отношение   — называют удельным зарядом частицы.

Рис. 2

Период вращения частицы

3. Скорость заряженной частицы направлена под углом   к вектору   (рис. 3).

Движение частицы можно представить в виде суперпозиции равномерного прямолинейного движения вдоль поля со скоростью   и движения по окружности с постоянной по модулю скоростью   в плоскости, перпендикулярной полю. Радиус окружности определяется аналогично предыдущему случаю, только надо заменить   на  , то есть