Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алгебраические структуры.docx
Скачиваний:
16
Добавлен:
22.09.2019
Размер:
940.35 Кб
Скачать
  1. Произведение комплексных чисел в тригонометрической форме. Возведение числа в степень и извлечение корня.

Теорема. (Об умножении комплексных чисел в тригонометрической форме записи.)

Пусть , где и , где – два произвольных комплексных числа записанных в тригонометрической форме. Тогда

. (13)

Доказательство.

, ч.т.д.

Теорема доказана.

Отсюда вытекает правило умножения комплексных чисел в тригонометрической форме записи.

Для того, чтобы перемножить два комплексных числа в тригонометрической форме записи нужно перемножить их модули, а аргументы сложить.

Следствие 1. Пусть k натуральное число и . Пусть далее , где – произвольные n комплексных чисел записанных в тригонометрической форме записи. Тогда

.

Доказательство проводится индукцией по числу сомножителей и предоставляется читателю.

Следствие 2. Пусть n натуральное число и – произвольное комплексное число в тригонометрической форме записи. Тогда

.

Доказательство сразу же следует из Следствия 1.

Теорема. (Свойства модуля комплексного числа.)

Пусть – произвольные комплексные числа и соответствующие точки на комплексной плоскости. Тогда:

1) и . Т.е. модуль произведения комплексных чисел равен произведению их модулей и модули противоположных чисел равны;

2) расстояние между точками и комплексной плоскости равно модулю разности соответствующих комплексных чисел: ;

3) ;

4) ;

Доказательство. 1) По предыдущей теореме имеем:

, где и ,

т.е. .

Таким образом, равенства и есть тригонометрическая форма записи числа , следовательно, по теореме о равенстве комплексных чисел в тригонометрической форме записи, имеем , ч.т.д.

Далее, т.к. , то по только что доказанному свойству , ч.т.д.

Заметим, что последнее равенство можно получить и из других соображений.

Противоположные числа на комплексной плоскости изображаются точками симметричными относительно начала координат. Действительно, пусть . Тогда и точки , имеют противоположные декартовые координаты. Значит, в силу симметрии, расстояния от этих точек до начала координат равны, т.е. , ч.т.д. Заметим, также, что такой же результат можно получить с помощью формулы (12) вычисления модуля комплексного числа.

2). Пусть , . Тогда и по формуле (12) имеем:

. (14)

С другой стороны, рассмотрим числа и как точки на комплексной плоскости. Тогда точка имеет декартовые координаты , а и искомое расстояние между ними вычисляется по формуле (14), ч.т.д.

3) Рассмотрим на комплексной плоскости точки , и начало координат О. В общем случае эти три точки являются вершинами треугольника :

рис.6.

Воспользуемся известным свойством треугольника: длина стороны треугольника не превосходит суммы длин двух его других сторон.

Мы только что доказали, что длина стороны этого треугольника равна , а длины сторон и равны по определению модулям чисел и : , . Отсюда и получаем, что .

Заменим в последнем неравенстве число на противоположное число , тогда получаем:

, ч.т.д.

Заметим, что равенство в этих неравенствах достигается тогда и только тогда, когда треугольник вырождается в отрезок прямой, т.е. когда все три точки О, и лежат на одной прямой.

4) , откуда следует

. Поменяв местами и , получаем

, откуда и следует доказываемое неравенство.

Теорема доказана.

Теория комплексных чисел имеет много приложений в различных областях математики. Не могу удержаться от искушения привести хотя бы один такой пример, относящийся к области теории чисел.

Определение. Говорят, что натуральное число n представимо в виде суммы двух квадратов, если существуют такие целые числа х и у, что выполняется равенство:

.

Теорема. Если два числа представимы в виде суммы двух квадратов, то их произведение также представимо в виде суммы двух квадратов.

Доказательство. Пусть и , где .

Нам нужно доказать, что найдутся два целых числа а и b такие, что .

С этой целью рассмотрим два комплексных числа и .

Тогда и по формуле (12) имеем: .

С другой стороны, , . Так как , то или , то отсюда получаем равенство: , где , ч.т.д.

Теорема доказана.

Линейная алгебра

6. Системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования, метод Гаусса. Однородные и неоднородные системы.

Определение. Система линейных уравнений — это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Определение. Решение системы уравнений — это последовательность чисел (k1, k2, ..., kn), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x1, x2, ..., xn дает верное числовое равенство.

Эквивалентные системы линейных уравнений

Системы линейных уравнений называются эквивалентными, если множество их решений совпадает, то есть любое решение одной системы одновременно является решением другой, и наоборот.

Систему, эквивалентную данной, можно получить, в частности, заменив одно из уравнений на это уравнение, умноженное на любое отличное от нуля число. Эквивалентную систему можно получить также, заменив одно из уравнений суммой этого уравнения с другим уравнением системы. В общем, замена уравнения системы на линейную комбинацию уравнений даёт систему, эквивалентную исходной.

Система линейных алгебраических уравнений

эквивалентна системе

,

где невырожденная матрица.

В частности, если сама матрица — невырожденная, и для неё существует обратная матрица , то решение системы уравнений можно формально записать в виде

Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные

Пусть исходная система выглядит следующим образом

Матрица называется основной матрицей системы, — столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных [3].

Тогда переменные называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число , где , то рассматриваемая система несовместна.

Пусть для любых .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом ( , где — номер строки):

где

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

Линейное однородное уравнение первого порядка

Общее решение: .

Решение задачи Коши, y(x0) = y0:

Линейное неоднородное уравнение первого порядка

Общее решение:

Решение задачи Коши, y(x0) = y0: