Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по МАТМОДЕЛ.doc
Скачиваний:
53
Добавлен:
21.09.2019
Размер:
4.95 Mб
Скачать

2.4. Постановка задач расчета теплового процесса на дискретной модели

В электронно-вычислительной аппаратуре могут происходить следующие процессы передачи тепла: конвекция, кондукция и лучеиспускание. Разностный метод не применим для расчета передачи тепла конвекцией и лучеиспусканием. Поэтому ограничимся рассмотрением конструкций, элементы которых помещены либо в твердый наполнитель, например, в пенопласт, компаунд или резину, либо в желеобразный наполнитель с малым коэффициентом текучести. То есть будем рассматривать конструкции, в которых происходит только передача тепла теплопроводностью (кондукция). Предположим, что блок ЭВА имеет прямоугольную форму, внутри которого находятся источники тепла – радиоэлементы, через которые протекает электрический ток. Блок залит наполнителем с коэффициентом теплопроводности К и удельной теплоемкостью С. Разобьем мысленно конструкцию на части прямоугольной формы, каждую из которых назовем элементом.

.

Рис.2.4.1.

Рис.2.4.2.

Для более высокой точности расчета выберем элементы одинаковых размеров, причем сами размеры элементов примем минимально возможными. В центре элемента выделим особую точку – узел сетки. Далее, попытаемся определить температуру в каждом узле сетки в каждый момент времени. Для простоты будем считать, что блок однороден, то есть входящие в него материалы имеют одинаковую теплоемкость и коэффициент теплопроводности. Температуру, определяемую в узле сетки с координатами x, y, z, в момент времени t, обозначим как tX,Y,Z, а в следующий момент времени как t+1X,Y,Z. Размеры блока, координаты и мощность тепловыделяющих радиоэлементов будем считать заданными. Кроме того, для решения задачи должны быть заданы начальные и граничные условия.

В начальных условиях задачи необходимо указать температуру во всех узлах сетки блока в начальный момент времени. Обычно при рассмотрении переходных процессов за начальный момент времени выбирается момент включения электрических цепей под нагрузку. До этого момента температура во всех узлах считается одинаковой и равной наружной температуре, например, комнатной (20ОС или 293ОК).

В граничных узлах блока могут быть заданы различные граничные условия. Когда на границе задается значение самой функции, то есть температура – это граничное условие 1-го рода и решение получается наиболее простым. Однако, к сожалению, только при грубом упрощении нестационарной задачи (то есть задачи с изменением температуры во времени) можно считать температуру на поверхности бока заданной, например, равной наружной температуре. Наиболее близкими к реальным условиям являются граничные условия 2-го рода, когда задаются плотности теплового потока по всей наружной поверхности блока. Далее мы будем решать задачу с граничными условиями 2-го рода.

2.4.1 Уравнение теплопередачи тепла через элемент дискретной модели

Запишем типовые уравнения движения теплоты. Для этого воспользуемся законом сохранения энергии: количество притекающей к данному элементу тепловой энергии равно количеству утекающей энергии плюс количество накапливающейся энергии. В рассматриваемом случае тепловая энергия не превращается в другие виды энергии, однако, другие виды энергии могут превращаться в тепло. Например, электрическая энергия целиком превращается в тепло, поэтому в уравнении теплового баланса нужно учесть количество энергии, выделяемой за счет электрических потерь.

Рассмотрим прямоугольный элемент объема блока (рисунок 2.4.1). Количество энергии, притекающей и утекающей через боковые поверхности этого элемента, выражается через величину плотности тепловых потоков. Удельная плотность теплового потока J [Дж/м2сек ] определяется количеством теплоты, проходящей через единичную площадь в единицу времени. Чтобы определить количество теплоты, проходящей через боковую грань элемента за некоторое время, необходимо соответствующую плотность теплового потока умножить на площадь грани и на интервал времени:

(JX+ – JX) hYhZ + (JY+ – JY) hXhZ + (JZ+ – JZ) hXhY = C  (1)

где: J – удельная плотность тепловых потоков,  - время,  - приращение температуры.

В правой части уравнения (1) записано количество теплоты, накапливаемой внутри элемента за время .

Выполним в уравнении (1) следующие преобразования:

1. Приведем количество теплоты в левой и правой части уравнения к единичному объему и к единице времени, для этого разделим все члены. Для этого разделим все члены на объем элемента hXhZhY и на интервал времени .

2. Представим приращение температуры  в узле с координатами i, j, k за интервал времени  в виде разности температур в начале и в конце этого интервала:

 =  t+1 i, j, k –  t i, j, k

В результате получим уравнение:

(JX+ – JX)

+

(JY+ – JY)

+

(JZ+ – JZ)

= CУД

ijkt+1–ijkt

(2)

hX

hY

hZ

Теперь в правой части уравнения (15) стоит не теплоемкость элемента, а удельная теплоемкость вещества (наполнителя), составляющего элемент. В целом правая часть определяет количество теплоты, которое накапливается в единичном объеме в единицу времени в том месте теплового поля, где расположен рассматриваемый элемент. Теперь можно учесть то тепло G, которое выделяется в радиоэлементах за счет превращения электрической энергии в тепловую. Поскольку удельное тепловыделение определяется через количество теплоты, выделяемой в единичном объеме за единицу времени, то можно прибавить соответствующий член к левой части уравнения (15). Приходим к выражению:

(JX+ – JX)

+

(JY+ – JY)

+

(JZ+ – JZ)

+G = CУД

ijkt+1–ijkt

(3)

hX

hY

hZ

Удельное тепловыделение G стоит в левой части уравнения потому, что оно вносит теплоту в рассматриваемый объем.