Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
первый колок по физике.docx
Скачиваний:
16
Добавлен:
30.08.2019
Размер:
408.7 Кб
Скачать

Тема 1.7.Механические волны–процесс распространения механических колебаний в среде (жидкой,твердой,газообразной).

Продольные и поперечные волны. Волна называется поперечной, если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны. Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны. Уравнение плоской и сферической волн. называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x, y, z) и времени t. .ХПлоская Сферической: или

Характеристики волн. Выделяют волны:

  • По признаку распространения в пространстве: стоячие, бегущие.

  • По характеру волны: колебательные, уединённые (солитоны).

  • По типу волн: поперечные, продольные, смешанного типа.

  • По законам, описывающим волновой процесс: линейные, нелинейные.

  • По свойствам субстанции: волны в дискретных структурах, волны в непрерывных субстанциях.

  • По геометрии: сферические (пространственные), одномерные (плоские), спиральные.

гребень волны — множество точек волны с максимальным положительным отклонением от состояния равновесия;

долина (ложбина) волны — множество точек волны с наибольшим отрицательным отклонением от состояния равновесия;

волновая поверхность — множество точек, имеющих в некий фиксированный момент времени одинаковую фазу колебаний. В зависимости от формы фронта волны выделяют плоские, сферические, эллиптические и другие волны.

Дифракция—явление,которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн.

Интерференция—взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.

Принцип Гюйгенса. Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Раздел 2. Основы молекулярной физики и термодинамики

Тема2.1.Основы молекулярной физики. Статистический и термодинамический методы исследования.Молекулярная физика и термодинамика—разделы физики,в которых изучаются макроскопические процессы в телах,связанные с очень большим числом в телах атомов и молекул.Для исследования этих процессов используют два принципиально различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй—термодинамики. 

Термодинамические параметры—физические величины, характеризующие состояние термодинамической системы: Функции состояния в термодинамике включают:

температуру, давление, объём, энтропию, термодинамические потенциалы.

.

Средняя кинетическая энергия движения молекул- среднее арифметическое значение кинетических энергий молекул вещества, обусловленные их поступательным движением. 

Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражением

(6) или

, где k является постоянной Больцмана (отношение универсальной газовой постоянной R к числу Авогадро NA), i — число степеней свободы молекул ( в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Закон Максвелла распределения молекул идеального газа по скоростям и энергиям теплового движения. Для газа, подчиняющегося классической механике, в состоянии статистического равновесия функция распределения f Максвелла по скоростям имеет вид: f(v) =n(m/2pkT)3/2exp(-mv2/2kT), где m — масса молекулы, Т — абсолютная температура системы, k — постоянная Больцмана. Значение функции распределения f(v) зависит от рода газа (от массы молекул) и от температуры. С помощью распределения Максвелла можно вычислять средние значения скоростей молекул и любых функций этих скоростей. В частности, средняя квадратичная скорость v2 = 3kT/m, а средняя скорость молекулы v = (8kT/pm)1/2. Распределение Максвелла не зависит от взаимодействия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно применить классическое описание.