Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
020100_68_Иностранный_язык_английский.doc
Скачиваний:
19
Добавлен:
28.08.2019
Размер:
330.24 Кб
Скачать

Содержание зачета

Цель зачета: проверить уровень овладения учащимися всеми видами речевой деятельности (говорение, аудирование, чтение и письмо). Он состоит из письменной итоговой контрольной работы и устного опроса по аспектам «Практика речи» и «Теория и практика перевода».

Основное требование – освоение аспектного минимума дисциплины по английскому языку в профессиональной сфере.

Примечание. Зачет может выставляться автоматически при успешном выполнении аудиторных и самостоятельных работ в течение семестра.

Содержание экзамена

1. Написание письма научного характера (письмо-приглашение, - запрос, - просьба и т.п.) или аннотации к научной статье на заданную

тематику. Время выполнения – 40-45 минут.

2. Полная и точная письменная передача на русском языке профессионально-ориентированного текста. Объём текста 1800-2000 п.зн. Разрешается пользоваться словарём. Время выполнения – 60 минут. Предложенный преподавателем фрагмент текста читается в начале ответа на ИЯ вслух.

3. Устное реферативное изложение на ИЯ содержания профессионально-ориентированного текста объёмом 2300-2500 п.зн. Пользоваться словарём не разрешается, время выполнения – 25-30 минут.

4. Беседа с преподавателем на ИЯ по теме, связанной с научно-исследовательской работой магистров.

5. Прослушивание на ИЯ аудиотекста общенаучного монологического характера длительностью до 5-ти минут (однократное предъявление). Тестовый контроль понимания прослушанного текста.

Образец экзаменационного билета

Билет 5 Вопрос 1

Spectra issues dissolve in ionic liquids

10 September 2009

UK scientists have used x-ray photoelectron spectroscopy (XPS) to follow an electrochemical reaction in situ.

S pectroscopic techniques such as infrared and ultraviolet-visible absorption are routinely used to investigate electrochemical reactions, giving important mechanistic and structural information. However, these methods are limited to probing the outer electrons of species and cannot be used to monitor core electronic changes. XPS could fulfil this need but its requirement for ultra-high vacuum (UHV) conditions introduces a critical obstacle: solvent evaporation.

 

The reduction of iron(III) to iron(II) is monitored using X-ray photoelectron spectroscopy

 

Peter Licence at the University of Nottingham, UK, has overcome this problem using ionic liquids, exploiting both their low volatility and inherent conduction properties. By specifically employing an iron(III)-containing ionic liquid, Licence and his colleagues were able to monitor iron(III)-iron(II) reduction using XPS. Simple though it sounds, the work has been far from easy. 'We had phenomenal problems,' admits Licence, 'we could do the electrochemistry in UHV and we've been able to [measure the XP spectra] of the ionic liquids, but to do both at the same time has been a real uphill struggle.' Given the difficulties, Licence is clearly pleased with his team's success. 'This is the first time that anyone has been able to monitor a real chemical reaction in a high vacuum environment,' he says.

"This is an important step forward; actually being able to do the electrochemistry inside the spectrometer is a very desirable tool for developing sensors and catalysts" - Gregory Wildgoose, University of Oxford, UK

Gregory Wildgoose, an expert in electrochemistry at the University of Oxford, is similarly enthusiastic. 'This is an important step forward; actually being able to do the electrochemistry inside the spectrometer is a very desirable tool for developing sensors and catalysts.' Wildgoose also praises the team's ingenuity in improving the technique's sensitivity. 'Incorporating the redox probe into the ionic liquid is very clever, enabling a sharp XPS signal, which would be difficult in a normal solute-solvent system,' he adds. 

Licence is now eager to apply the technique, and test its limits. 'We're interested in designing more efficient catalysts, new probes, sensors, functionalised electrodes,' he explains, 'we really want to push this technology to see how far we can take it.'

Philip Robinson

http://www.rsc.org/Publishing/ChemScience/Volume/2009/10/Spectra_issues_dissolve.asp

Билет 5 Вопрос 2

Ultrathin catalysts on demand

10 September 2009

Korean chemists have taken acidic zeolite catalysts to the limit in terms of thickness - creating ultrathin nano-sheets that are efficient and long-lived catalysts for hydrocarbon cracking and other petrochemical applications.

Zeolites are already used in the petrochemicals industry, but making the catalysts very thin means that reactant molecules can easily diffuse into the zeolite structure and product molecules can get out quickly, explains Ryong Ryoo of the Korean advanced institute of science and technology (KAIST) in Daejeon. This improves the efficiency of the catalyst and reduces unwanted side reactions that can produce polymeric hydrocarbon 'coke' that clogs the zeolite pores and eventually kills the catalytic activity.

To make the thin sheets, Ryoo and his team used a surfactant as a template to direct the growth of the zeolite structure. The surfactant molecule has a polar 'head' group - with two quaternary ammonium groups around which the aluminosilicate zeolite crystal grows - and a long hydrocarbon 'tail', which prevents the sheets from aggregating together into larger, three dimensional crystals. When the surfactant is removed, these flakes pile up randomly with gaps in between which further aids diffusion to the catalyst sites.

Scanning electron microscope image of the zeolite flakes (left) and structure of the single MFI zeolite nano-sheet (right) © Nature

'Di-quaternary ammonium cations are very effective structure-directing groups for MFI zeolites,' says Ryoo, 'but so far people have used small cations that end up totally included in the zeolite structure.' Using the protruding tails to prevent the crystals from growing in one dimension gives thin sheets which are only as thick as a single unit cell - the smallest repeating unit in the crystal lattice.

Ryoo admits that his original intention was for the surfactant to form micelles and to build the zeolite on the surface of those micelles to make a controlled three dimensional porous crystalline network. But Duncan Macquarrie from the University of York, UK, thinks that the nano-sheet structure could have advantages over such mesoporous zeolites: 'One of the benefits of microporous zeolites is shape selectivity - molecules react based on whether they can fit into the pore or not - and you tend to lose some of that in mesoporous structures.' Macquarrie adds that the thinness of the sheets also improves accessibility of catalytic sites within the structure - 'it's potentially the best of both worlds,' he says.

The team has tested the nano-sheets as catalysts in some representative reactions, using bulky molecules to determine the effect of increased diffusion within the zeolite structure. The nano-sheet catalysts showed increased activity in all the reactions compared with the same weight of a standard zeolite catalyst. When the team used their catalyst to convert methanol to hydrocarbon fuel, they also saw that the nano-sheets had greatly extended catalyst lifetimes. Ryoo attributes this to the lack of formation of unwanted 'coke' byproducts, which block the micropores of conventional zeolites because the product molecules cannot diffuse out fast enough. With the nano-sheets, the small amount of coke that does form is mostly on the catalyst surface, so doesn't affect catalytic activity.

Phillip Broadwith

http://www.rsc.org/chemistryworld/News/2009/September/09090903.asp

Критерии оценки

  1. Аудирование

умение вычленить общую и детальную информацию звучащего текста

2 б.

  1. Письмо

орфографическая и грамматическая правильность

1,5 б.

умение составлять письменный текст согласно заявленному жанру

1,5 б.

  1. Письменный

перевод

чтение

1 б.

адекватный

перевод

3 б.

стиль изложения на рус.яз.

2 б.

2. Реферирование

владение навыками реферирования, логичного, последовательного изложения

1 б.

умение вычленить и выразить основные проблемы статьи

1 б.

грамотное оформление речи

1 б.

3. Собеседование

грамотное оформление монологической речи

1 б.

владение техникой ведения беседы

1 б.