Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan_0494.docx
Скачиваний:
14
Добавлен:
02.08.2019
Размер:
482.91 Кб
Скачать
  1. Определение двойного интеграла

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y)  D – произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то Si – площадь каждой частной области. Наибольший из диаметров областей обозн . В каждой частной области Di возьмем произв. точку Pi (i , Di)  Di, наз. промежуточной. Если диаметр разбиения D   0 , то число n областей Di  . Вычислим зн-ие ф-ции в промежуточных точках и составим сумму:I = f(i, Di)Si (1), наз. интегральной суммой ф-ции. Ф-ция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.

Двойным интегралом ф-ии f(x,y) по области D наз. предел интегральной суммы при   0. Обозн:

или

  1. Свойства двойного интеграла

1. Двойной интеграл по области D = площади этой области.

2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G.

3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:

4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов:

5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y)  0 то и f/g интегрируема в Д.

6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:

В частности: g(x,y) >=0 то и

7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем

обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.

8. Теорема о среднем значении.

Если ф-ция f(x,y) интегр. в Д., то в этой области найдется такая точка (, )  Д, что:

(2), где S – площадь фигуры Д. Значение f(, ) опред по ф-ле (2) наз. средним значением ф-ции f по области Д.

  1. Приведение двойного интеграла к повторным в случае прямоугольной области

  2. Приведение двойного интеграла к повторным в случае криволинейной области

  3. Замена переменных в двойном интеграле

Для вычисления двойного интеграла   иногда удобнее перейти в другую систему координат.  Это может быть обусловлено формой области интегрирования или сложностью подынтегральной функции.  В новой системе координат вычисление двойного интеграла значительно упрощается.  Замена переменных в двойном интеграле описывается формулой

где выражение   представляет собой так называемый якобиан преобразования  , а S − образ области интегрирования R, который можно найти с помощью подстановки   в определение области R. Отметим, что в приведенной выше формуле  означает абсолютное значение соответствующего определителя.  Предполагая, что преобразование координат   является взаимно-однозначным, обратное соотношение описывается якобианом

при условии, что знаменатель нигде не равен 0.  Итак, замена переменных в двойном интеграле производится с помощью следующих трех шагов:

  1. Найти образ S в новой системе координат   для исходной области интегрирования R;

  1. Вычислить якобиан преобразования   и записать дифференциал в новых переменных ;

  1. Заменить в подынтегральном выражении исходные переменные x и y, выполнив, соответственно, подстановки   и  .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]