Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по гидравлике 2011.doc
Скачиваний:
36
Добавлен:
22.04.2019
Размер:
3.05 Mб
Скачать

Разветвлённые трубопроводы

Разветвлённые трубопроводы отличаются тем, что они имеют одну общую точку, из которой расходятся разные потоки, или общую точку, в которой несколько разных потоков сходится. Этот вариант наиболее часто встречается в гидросистемах технологического оборудования, где от одной насосной станции питается сразу несколько одновременно работающих потребителей. Для разветвлённых трубопроводов, так же как и для параллельных, можно записать уравнение расходов

,

где - расходы в соответствующих ветвях.

Составим также уравнение Бернулли для любой из ветвей. Будем считать: давление в трубопроводе таково, что нивелирной высотой можно пренебречь. Примем также, что давление в конце каждой ветви (в сечении к), необходимое для преодоления нагрузки, равно . Уравнение Бернулли для сечений н и к будет выглядеть следующим образом:

,

где i – индекс, соответствующий определённой ветви.

Если считать, что рассматриваемая система трубопроводов принадлежит гидросистеме технологической машины, в которой давления в различных ветвях, как правило, составляют несколько мегапаскалей, а скорости течения жидкости по трубам чаще всего невысокие (до5 м/c), скоростным напором можно пренебречь. В самом деле, например, при скорости 1 м/c и коэффициенте кинетической энергии α равным 2, величина скоростного напора составит 0,1 м, что при переводе в единицы давления равно 0,001МПа. С учетом этого и после обычных преобразований получим

.

Величина , в данном случае, представляет собой характеристику простого трубопровода и равна . Таким образом, для каждой ветви разветвлённого трубопровода можно написать подобное уравнение. Если добавить к ним уравнение расходов, то можно получить систему уравнений вида

.

Подобную систему уравнений можно записать для любого числа ветвей разветвлённого трубопровода. Решая её, можно определить, какой расход и какое давление должен обеспечивать источник гидравлической энергии, чтобы на выходе трубопроводов получалось заданное давление при заданном расходе.

Лекция 16. Гидравлический удар в трубопроводах

Теоретическое и экспериментальное исследование гидравлического удара в трубопроводах впервые было проведено известным русским учёным Николаем Егоровичем Жуковским в 1899 году. Это явление связано с тем, что при быстром закрытии трубопровода, по которому течёт жидкость, или быстром его открытии (т.е. соединении тупикового трубопровода с источником гидравлической энергии) возникает резкое, неодновременное по длине трубопровода изменение скорости и давления жидкости. Если в таком трубопроводе измерять скорость жидкости и давление, то обнаружится, что скорость меняется как по величине, так и по направлению, а давление - как в сторону увеличения, так и в сторону уменьшения по отношению к начальному. Это означает, что в трубопроводе возникает колебательный процесс, характеризующийся периодическим повышением и понижением давления. Такой процесс очень быстротечен и обусловлен упругими деформациями стенок трубы и самой жидкости.

Пусть в конце трубы, по которой движется жидкость со скоростью υ0, произведено мгновенное закрытие крана (рис. 6.10, а).

Рис. 6.10. Стадии гидравлического удара

При этом скорость частиц, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается в соответствии с увеличением давления на величину ΔPуд, которое называется ударным. Область (сечение n - n), в которой происходит увеличение давления, называется ударной волной. Ударная волна распространяется вправо со скоростью c, называемой скоростью ударной волны.

Когда ударная волна переместится до резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы - растянутыми. Ударное повышение давления распространится на всю длину трубы (рис. 6.10, б).

Далее под действием перепада давления ΔPуд частицы жидкости устремятся из трубы в резервуар, причем это течение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение n-n перемещается обратно к крану с той же скоростью c, оставляя за собой выровненное давление P0 (рис. 6.10, в).

Жидкость и стенки трубы предполагаются упругими, поэтому они возвращаются к прежнему состоянию, соответствующему давлению P0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0, но направленную теперь в противоположную теперь сторону.

С этой скоростью весь объем жидкости стремится оторваться от крана, в результате возникает отрицательная ударная волна под давлением P0 - ΔPуд, которая направляется от крана к резервуару со скоростью c, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость, что обусловлено снижением давления (рис. 6.10, д). Кинетическая энергия жидкости вновь переходит в работу деформаций, но противоположного знака.

Состояние трубы в момент прихода отрицательной ударной волны к резервуару показано на рис. 6.10, е. Так же как и для случая, изображенного на рис. 6.10, б, оно не является равновесным. На рис. 6.10, ж, показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью υ0.

Очевидно, что как только отраженная от резервуара ударная волна под давлением ΔP уд достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.

Повышение давления при гидравлическом ударе можно определить по формуле

ΔPуд = ρυ0c

Данное выражение носит название формулы Жуковского. В нем скорость распространения ударной волны c определится по формуле:

где r - радиус трубопровода; E - модуль упругости материала трубы; δ - толщина стенки трубопровода; K - объемный модуль упругости (см. п.1.3)

Если предположить, что труба имеет абсолютно жесткие стенки, т.е. E = , то скорость ударной волны определится из выражения

Для воды эта скорость равна 1435 м/с, для бензина 1116 м/с, для масла 1200 - 1400 м/с.