Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по гидравлике 2011.doc
Скачиваний:
36
Добавлен:
22.04.2019
Размер:
3.05 Mб
Скачать

Струйная модель потока

В гидравлике рассматривается струйная модель движения жидкости, т.е. поток представляется как совокупность элементарных струек жидкости, имеющих различные скорости течения uω. Индекс ω означает (напоминает), что в каждой точке живого сечения скорости различны. Элементарные струйки как бы скользят друг по другу. Они трутся между собой и вследствие этого их скорости различаются. Причём, в середине потока скорости наибольшие, а к периферии они уменьшаются. Распределение скоростей по живому сечению потока можно представить в виде параболоида с основанием, равным ω. Высота его в любой точке равна скорости соответствующей элементарной струйки uω. Площадь элементарной струйки равна dω. В пределах этой площади скорость можно считать постоянной. Понятно, что за единицу времени через живое сечение потока будет проходить объём жидкости Wt, равный объёму параболоида. Этот объём жидкости и будет равен расходу потока.

.

С учётом понятия средней скорости, которая во всех точках живого сечения одинакова, за единицу времени через живое сечение потока будет проходить объём жидкости (обозначим его Wtср ), равный:

Wtср =ωVср.

Если приравнять эти объёмы Wtср = Wt=параболоида, можно определить значение средней скорости потока жидкости:

В дальнейшем среднюю скорость потока жидкости будем обозначать буквой V без индекса ср.

При неравномерном движении средняя скорость в различных живых сечениях по длине потока различна. При равномерном движении средняя скорость по длине потока постоянна во всех живых сечениях.

Лекция 7. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости

В технологическом оборудовании чаще всего рассматривают потоки, в которых не образуются разрывы жидкости, т.е. жидкость сплошь заполняет пространство.

Рассмотрим элементарную струйку несжимаемой жидкости при установившемся движении, в которой выделим два произвольных сечения 1-1 и 2-2, расположенные на некотором расстоянии одно от другого. Здесь 1 и 2 – площади, u1 и u2 – скорости, dQ1 и dQ2 – расходы элементарной струйки в соответствующих живых сечениях.

Очевидно, что

и

,

причём dQ1 втекает в рассматриваемый участок элементарной струйки, а dQ2 – вытекает.

Учтём, что форма элементарной струйки не изменяется с течением времени, а поперечный приток и отток невозможны, так как скорости на боковой поверхности струйки направлены по касательным к линиям тока, из которых состоит эта боковая поверхность, тогда получаем, что расходы dQ1 и dQ2 равны, т.е.

Вследствие того, что сечения 1-1 и 2-2 выбраны произвольно, подобные соотношения справедливы для любых сечений элементарной струйки. Следовательно, можно записать:

или

Последнее соотношение называется уравнением неразрывности в гидравлической форме для элементарной струйки несжимаемой жидкости при установившемся движении.

Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении

Если просуммировать расходы всех элементарных струек в каждом живом сечении потока, то получится уравнение неразрывности для потока при установившемся движении. Обычно его записывают в следующих видах:

или

или

Из сказанного видно, что для несжимаемой жидкости при установившемся движении жидкости расход во всех живых сечения потока одинаков, несмотря на то, что площади живого сечения и средние скорости в каждом сечении и могут быть разными.

Из уравнения неразрывности вытекает следующее важное соотношение:

т.е. средние скорости в живых сечениях потока обратно пропорциональны их площадям.

Уравнение неразрывности потока жидкости в гидравлической форме очень часто применяется в гидравлике для описания движения жидкости в каналах и трубопроводах.