Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по гидравлике 2011.doc
Скачиваний:
36
Добавлен:
22.04.2019
Размер:
3.05 Mб
Скачать

Возникновение турбулентного течения жидкости

Если на каком-то участке трубопровода существует турбулентный поток, то это не значит, что такой же характер сохраняется во всей трубе. На различных участках трубопровода и даже на одних и тех же участках в разные периоды времени поток может иметь различный характер. Это может определяться либо различными диаметрами трубопроводов, либо изменением скорости течения жидкости. Во всех случаях при возникновении условий турбулентного режима он устанавливается в трубе не мгновенно. Это происходит в течение некоторого времени на участке трубы определённой длины. Рассмотрим процесс возникновения турбулентного режима движения.

Переход к турбулентному режиму может происходить из ламинарного, например, в результате плавного или внезапного изменения диаметра трубы Такой же переход возможен за счёт изменения скорости движения жидкости. К образованию турбулентного режима может приводить также и изменение формы потока жидкости.

Кроме перечисленных возможны и другие причины, особенно при режимах, характеризующихся числами Рейнольдса, близкими к критическому.

.

На основании опыта установлено следующее. Когда создаются условия для такого перехода, например, сужение проходного сечения трубы достигает значения, при котором поток может стать турбулентным, по периферии потока ламинарный слой нарушается и дальше по течению развивается турбулентный пограничный слой. Толщина этого слоя из-за турбулентного перемешивания достаточно быстро увеличивается, и турбулентный поток заполняет всё сечение трубопровода. Участок, на котором происходит превращение ламинарного режима движения в турбулентный, называется разгонным участком. Его длина по экспериментальным данным равна

,

где d – диаметр трубопровода.

Возникновение ламинарного режима

В реальных гидросистемах, даже при ламинарном режиме течения жидкости в круглых трубах, на пути потока встречаются участки с другой геометрией. Это могут быть соединения труб, изгибы, гидроаппараты и т.п. На таких участках характер потока меняется, режим движения становится турбулентным.

Однако после прохождения такого участка при входе жидкости в прямую трубу при соответствующей скорости устанавливается параболическое распределение скоростей. Поток снова стремится к ламинарному режиму движения. Происходит это не моментально, а в течение некоторого времени на отрезке трубы определённой длины. Такой отрезок называют начальным участком ламинарного течения lнач.

Длину такого участка можно определить из формулы Шиллера

,

г де d – диаметр трубы.

Отсюда, если в качестве Re взять критическое число Рейнольдса легко получить, что максимально возможная длина такого участка равна

Потери энергии на этом участке будут несколько больше, чем в остальной части трубы. С учётом этого формула для расчёта потерь напора на трение hтр при ламинарном движении в круглых гладких трубах принимает вид

Для коротких труб такое уточнение потерь напора может иметь существенное значение, для длинных величину 0,165 можно не учитывать.

Лекция 11. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости

Г идравлическая жидкость в гидросистемах технологического оборудования, как уже обсуждалось ранее, играет роль рабочего тела. Она обеспечивает перенос энергии от источника гидравлической энергии к потребителю (в большинстве случаев, к гидродвигателю). Для такого переноса используются напорные потоки. В подобных потоках жидкость со всех сторон ограничена твёрдыми стенками трубопроводов, каналов гидроаппаратов и полостей гидромашин. В дальнейшем мы будем ориентироваться именно на такие случаи, хотя аналогичные процессы сопровождают и движение безнапорных потоков.

Естественно, что твёрдые стенки препятствуют свободному движению жидкости. Поэтому при относительном движении жидкости и твердых поверхностей неизбежно возникают (развиваются) гидравлические сопротивления. На преодоление возникающих сопротивлений затрачивается часть энергии потока. Эту потерянную энергию называют гидравлическими потерями удельной энергии или потерями напора. Гидравлические потери главным образом связаны с преодолением сил трения в потоке и о твёрдые стенки и зависят от ряда факторов, основными из которых являются:

  • геометрическая форма потока,

  • размеры потока,

  • шероховатость твёрдых стенок потока,

  • скорость течения жидкости,

  • режим движения жидкости (который связан со скоростью, но учитывает её не только количественно, но и качественно),

  • вязкость жидкости,

  • некоторые другие эксплуатационные свойства жидкости.

Но гидравлические потери практически не зависят от давления в жидкости.

Величина гидравлических потерь оценивается энергией, потерянной каждой весовой единицей жидкости. Из уравнения Бернулли, составленного для двух сечений потока, обозначенных индексами 1 и 2 потери энергии потока жидкости можно представить как

.

Напомним, что в этом уравнении - энергия единицы веса жидкости, движущейся в поле сил тяготения,

- потенциальная энергия единицы веса жидкости, зависящая от её положения над уровнем нулевого потенциала (линией отсчёта),

- потенциальная энергия единицы веса жидкости, зависящая от степени её сжатия (от давления),

- давление в потоке жидкости,

- плотность жидкости,

- кинетическая энергия единицы веса потока жидкости,

- коэффициент кинетической энергии,

- средняя скорость потока жидкости,

- ускорение свободного падения.

Е сли учесть, что труба в обоих сечениях 1 и 2 имеет одинаковые площади поперечных сечений, жидкость является несжимаемой и выполняется условие сплошности (неразрывности) потока, то, несмотря на гидравлические сопротивления и потери напора, кинетическая энергия в обоих сечениях будет одинаковой. Учтя это, а также то, что при больших давлениях в напорных потоках и небольшой (практически нулевой) разнице нивелирных высот Z1 и Z2, потери удельной энергии можно представить в виде

.

Опыты показывают, что во многих (но не во всех) случаях потери энергии прямо пропорциональны квадрату скорости течения жидкости, поэтому в гидравлике принято выражать потерянную энергию в долях от кинетической энергии, отнесённой к единице веса жидкости

,

где - коэффициент сопротивления.

Таким образом, коэффициент сопротивления можно определить как отношение потерянного напора к скоростному напору.

Гидравлические потери в потоке жидкости разделяют на 2 вида:

  • потери по длине,

  • местные потери.