Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен алгем.docx
Скачиваний:
20
Добавлен:
21.04.2019
Размер:
456.28 Кб
Скачать

4. Проекция вектора на ось. Свойства проекции. Скалярное произведение. Выражение через проекцию. Свойства скалярного произведения. Условие ортогональности векторов.

Пусть в пространстве задана ось l, т. е. направленная прямая.

Проекцией точки М на ось l называется основание М1 перпендикуляра ММ1, опущенного из точки на ось.

Точка М1 есть точка пересечения оси l с плоскостью, проходящей через точку М перпендикулярно оси (см. рис. 7).

Если точка М лежит на оси l, то проекция точки М на ось совпадает с М1.

Пусть АВ — произвольный вектор (АВ 0). Обозначим через А1 и b 1проекции на ось l соответственно начала А и конца В вектора АВ и рассмотрим вектор А1В1

Проекцией вектора АВ на ось l называет ся положительное число |A 1B 1 | , если вектор А 1В 1 и ось l одинаково направлены и отрица тельное число — |A 1B 1 | , если вектор А 1В1 и ось l противоположно направлены (см. рис. 8). Если точки a1и b 1совпадают (А 1В 1 =0), то проекция вектора АВ равна 0.

Проекция вектора АВ на ось l обозначается так: прlАВ. Если АВ=0 или АВl , то прl АВ=0.

Угол   между вектором а и осью l (или угол между двумя векторами) изображен на рисунке 9. Очевидно,

Рассмотрим некоторые основные свойства проекций.

Свойство 1. Проекция вектора a на ось l равна произведению модуля вектора a на косинус угла   между вектором и осью, т. е. прla =|a |•cos  .

Следствие 5.1. Проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол — прямой.

Следствие 5.2. Проекции равных векторов на одну и ту же ось равны между собой.

Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Скалярное произведение векторов   обозначается символом   (порядок записи сомножителей безразличен, то есть  ).

Если угол между векторами  ,   обозначить через  , то их скалярное произведение можно выразить формулой

 (1)

Скалярное произведение векторов  ,   можно выразить также формулой

, или  .

Из формулы (1) следует, что  , если   - острый угол,  , если   - тупой угол;   в том и только в том случае, когда векторы   и   перпендикулярны (в частности,  , если   или  ).

Скалярное произведение   называется скалярным квадратом вектора и обозначается символом  . Из формулы (1) следует, что скалярный квадрат вектора равен квадрату его модуля:

.

Если векторы   и   заданы своими координатами:

,

то их скалярное произведение может быть вычислено по формуле

.

Отсюда следует необходимое и достаточное условие перпендикулярности двух векторов

.

Угол   между векторами

,  ,

дается формулой  , или в координатах

.

Проекция произвольного вектора   на какую-нибудь ось u определяется формулой

,

где   - единичный вектор, направленный по оси u. Если даны углы  , которые оси u составляет с координатными осями, то   и для вычисления вектора   может служить формула

.

  Свойства векторного произведения:            если  , то   равен площади параллелограмма, построенного на приведенных к общему началу векторах   и  .

Два вектора называют ортогональными, если их скалярное произведение равно нулю.