Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mini-shpory1-15.docx
Скачиваний:
1
Добавлен:
21.04.2019
Размер:
132.03 Кб
Скачать

Вопрос 11

Как известно, сумма, разность и произведение двух б.м.ф. есть функция б.м. Отношение двух б.м.ф. есть функция б.м. Отношение же двух б.м.ф. может вести себя различным образом: быть конечным числом, быть бесконечно большой функцией, бесконечно малой или вообще не стремиться ни к какому пределу. Две б.м.ф. сравниваются между собой с помощью их отношения. Пусть α=α(х) и β=β(х) есть б.м.ф. при х->x0, т.е. lim α(x)=0(x->x0) и limβ(x)=0(x->x0)

1.Если lim (α/β)=A=!0, то α и β называются б.м. одного порядка малости

2.Если lim (α/β)=A=0, то α называется б.м. более высокого порядка малости, чем β

3.Если lim (α/β)=A=∞, то α называется б.м. более низкого порядка малости, чем β

4.Если lim (α/β) не существует, то α и β называются несравнимыми.

Теорема. Предел отношения двух б.м. функций не изменится, если каждую или одну из них заменить эквивалентной ей б.м. Пусть α~α` и β~β` при х->x0. Тогда lim(α/β)= lim((α/β)*(α`/α`)*(β`/β`))=lim(α/α`)* lim(β`/β)* lim(α`/β`), т.е. lim(α/β)= lim(α`/β`) (везде x->x0).

Вопрос 12

Т1. Разность двух эквивалентных б.м.ф. есть б.м. более высокого порядка, чем каждая из них.

Пусть α~β при х->х0. Тогда lim(1-(β/α)=1-lim(β/α)=1-1=0.

Т2.Сумма конечного числа б.м.ф. разных порядков малости эквивалентна слагаемому низшего порядка. Пусть α->0 и β->0 при х->x0, причем α – б.м.ф. высшег порядка, чем β, т.е. lim (α/β)=0 при x->x0. Тогда lim((α+β)/β)=lim(α/β+1)=lim(α/β) + 1=0+1=1 (везде x->x0). Следовательно (α+β)~β при x->x0. Слагаемое, эквивалентное сумме б.м.ф. , называется главной частью этой суммы. Замена суммы б.м.ф. называется отбрасыванием б.м. высшего порядка.

Вопрос 13

Понятие непрерывности функции.

Введем разности ∆x=x-x0 и ∆f(x0)=f(x0)- f(x), которые будем называть соответственно приращениями аргумента и функции в точке x0.Ясно,что f(x) непрерывна в точке x0 тогда и только тогда, когда разность ∆f(x0)→0 при ∆x0 →0. Это дает нам возможность дать такое определение непрерывности: Функция f(x) непрерывна в точке x0 , если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Функция f непрерывна на множестве E, если она непрерывна в каждой точке данного множества.

Точки разрыва/ Если попытаться построить отрицание свойства непрерывности функции в точке (предельной для области определения), то получится следующее. Существует такая окрестность значения функции в рассматриваемой точке, что сколь близко мы не подходили бы к данной точке, всегда можно будет найти точку, значение в которой окажется за пределами заданной окрестности.

В этом случае говорят, что функция f терпит разрыв в точке a.

Теорема 1./Если функции f(x) и g(x) непрерывны в точке x0, то в этой точке непрерывны f(x)±g(x), f(x)g(x) и , если g(x)≠0.

Док-во. Это теорема является частным случаем о пределах суммы, разности, произведения и частного. Действительно, непрерывность f(x) и g(x) в точке x0 означает, что f(x) → f(x0) и g(x)→ g(x0 ) при x→x0 . Тогда f(x)±g(x)→ f(x0)±g(x0),f(x)g(x) и , если g(x0) ≠0. Тем самым, теорема доказана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]