Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА ЭКЗАМЕН!!!.docx
Скачиваний:
23
Добавлен:
20.04.2019
Размер:
1.11 Mб
Скачать
  1. Трудности классической электронной теории.

Несмотря на достигнутые успехи, классическая электронная теория проводимости металлов Друде-Лоренца не получила дальнейшего развития. Связано это с двумя основными причинами: 1) трудностями, с которыми столкнулась эта теория при объяснении некоторых свойств металлов; 2) созданием более совершенной квантовой теории проводимости твердых тел, устранившей затруднения классической теории и предсказавшей ряд новых свойств металлов.

Выделим основные затруднения теории Друде-Лоренца:

1. Согласно классической теории, зависимость удельного сопротивления металлов от температуры в то время, как на опыте в широком интервале температур вблизи Т≈300К для большинства металлов наблюдается зависимость ρ ~ Т.

2. Хорошее количественное совпадение с законом Видемана-Франца оказалось в известной степени случайным. В первоначальном варианте теории Друде не учитывал распределение электронов по скоростям. Позже, когда Лоренц учел это распределение, оказалось, что отношение

,

что значительно хуже согласуется с экспериментом. Согласно же квантовой теории,

.

3. Теория дает неправильное значение теплоемкости металлов. С учетом теплоемкости электронного газа С=9/2R, а на практике С=3R, что примерно соответствует теплоемкости диэлектриков.

4. Наконец, теория оказалась полностью неспособной объяснить открытое в 1911г. Камерлинг-Оннесом явления сверхпроводимости (полного исчезновения сопротивления) металлов при низких температурах, а также существования остаточного сопротивления, в сильной степени зависящего от чистоты металла.

  1. Гармонические колебания. Линейный гармонический осциллятор. Математический и физический маятники.

Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

x(t) = Asin(ωt + φ)

или

x(t) = Acos(ωt + φ),

Графики функций f(x) = sin(x) и g(x) = cos(x) на декартовой плоскости.

где х — значение изменяющейся величины, t — время, остальные параметры - постоянные: А — амплитуда колебаний, ω — циклическая частота колебаний, (ωt + φ) — полная фаза колебаний,  — начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

Гармонический осциллятор (в классической механике) — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы , пропорциональной смещению (согласно закону Гука):

где k — положительная константа, описывающая жёсткость системы.

Если  — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором. Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором. Если трение не слишком велико, то система совершает почти периодическое движение — синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Частота свободных колебаний затухающего осциллятора оказывается несколько ниже, чем у аналогичного осциллятора без трения.

Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине, торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор

Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит[1] от амплитуды и массы маятника.

Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида

где ω ― положительная константа, определяемая исключительно из параметров маятника. Неизвестная функция x(t) ― это угол отклонения маятника в момент t от нижнего положения равновесия, выраженный в радианах; , где L ― длина подвеса, g ― ускорение свободного падения. Уравнение малых колебаний маятника около нижнего положения равновесия (т. н. гармоническое уравнение) имеет вид:

.