Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TPP_Shopry.doc
Скачиваний:
6
Добавлен:
20.04.2019
Размер:
3.3 Mб
Скачать

13. Загальна характеристика вихiдних компонентiв пласмас.

Наполнители вводят для улучшения механических свойств пластмасс, уменьшения усадки во время отверждения, повышения их стойкости к действию различных сред, а также для снижения стоимости полимерных материалов. Наполнители являются инертными веществами. По своей природе наполнители делятся на органические и неорганические (минеральные). Каждая из этих групп, в свою очередь, подразделяется на дисперсные и волокнистые. К органическим дисперсным наполнителям относятся технический углерод, древесная мука; к органическим волокнистым наполнителям – хлопковый линт, целлюлоза, древесный шпон, текстильная крошка, бумага, хлопчатобумажная ткань, угольная ткань. К минеральным дисперсным наполнителям относятся молотая слюда, кварцевая мука, карбонат кальция, каолин, тальк; к неорганическим волокнистым наполнителям – асбест, стеклянное волокно, борное волокно и др.

Пластификаторы обеспечивают получение эластичных материалов, сохраняющих свои свойства в широком диапазоне температур. При добавлении пластификаторов улучшаются и другие свойства полимеров: морозостойкость, огнестойкость, стойкость к воздействию ультрафиолетовых лучей. Пластификаторы должны совмещаться с полимером, быть химически стабильными и иметь малую летучесть. Из химических соединений в качестве пластификаторов наиболее часто используют сложные эфиры различных кислот (дибутилфталат, диоктилфталат, трикрезилфосфат и др.) и низкомолекулярные полиэфиры.

Стабилизаторы способствуют длительному сохранению свойств пластмасс в процессе их переработки и эксплуатации, особенно от действия тепла, света, кислорода воздуха. По характеру действия стабилизаторы делятся на антиоксиданты (предотвращающие термоокислительную деструкцию) и светостабилизаторы (использующиеся против фотолиза и фотоокисления).

Отвердители – это вещества, которые вводят для создания трехмерной структуры в полимере.

Смазывающие вещества – стеарин, олеиновая кислота – предотвращают прилипание материала к оборудованию в процессе его переработки в изделие.

Красители и пигменты – органические вещества, которые вводят в полимер для его окрашивания.

Порообразователи (вспенивающие агенты) – соединения, разлагающиеся при нагревании с выделением газообразных веществ, вводятся для производства газонаполненных пластмасс (пенопласты и поропласты).

14. Змiна розмiрiв розплаву пiсля виходу з каналу формування. Коефiцiент еластичного вiдновлення.

Наличие комформационных переходов при течении, а также развитие упругой деформации обусловливают проявление специфических эффектов, характерных для течения расплавов и растворов полимеров, таких, как нормальные напряжения при сдвиговом течении, эффект Барруса, эффект Вайссенберга.

Эффект Барруса. После выхода расплава из формующих каналов под действием нормальных напряжений возникает эластическое восстановление струи, так называемый эффект Барруса. Эластическое восстановление – это изменение сечения экструдата. Так, при течении в цилиндрическом канале на выходе наблюдается увеличение диаметра, а при истечении из кольцевых каналов изменяется как диаметр, так и толщина стенки трубчатого экструдата (рис. 7.3).

Рис. 7.3. Изменение размеров расплава после выхода из канала:

а – круглый профиль; б – трубчатая заготовка.

Обычно в качестве показателя эластического восстановления используют коэффициент Кэ:

, (7.12)

где Rс радиус струи расплава; Rэ радиус экструдата после охлаждения; Rк

– радиус канала; ρр – плотность расплава; ρо – плотность полимера при 20°С.

Изменение линейных размеров экструдата (уменьшение длины и увеличение сечения) связано с протеканием релаксационных процессов. Упругая деформация, накопленная в расплаве при течении в канале, восстанавливается после снятия внешней силы, т. е. при выходе из канала макромолекулы переходят в равновесное состояние. Однако этот процесс происходит при свободном выходе. Если же расплав отводится с помощью тянущего приемного устройства, то он на выходе подвергается действию растягивающих напряжений от принудительной вытяжки, и если эти напряжения больше нормальных, обусловленных напряжениями сдвига, то сечение экструдата уменьшается и процесс экструзии осуществляется с вытяжкой расплава. Далее рассматривается

процесс со свободным выходом расплава.

Поскольку ориентация макромолекул количественно связана с напряжением сдвига, то коэффициент эластического восстановления зависит от скорости сдвига, температуры и длины канала. При увеличении скорости сдвига происходит нелинейный рост коэффициента эластического восстановления. При низких температурах высокая степень ориентации достигается при малых значениях скорости сдвига, а при повышении температуры зависимость эта становится более плавной, так как возрастает процесс дезориентации макромолекул под действием тепловой флуктуации. Следует заметить, что при достижении некоторого значения скорости сдвига темп роста коэффициента эластического восстановления Кэ замедляется, а в некоторых случаях даже уменьшается значение Кэ Это явление связано с появлением эластической турбулентности или проскальзыванием расплава по поверхности канала.

При увеличении длины канала Кэ снижается, что объясняется входовыми потерями давления. Поскольку на входе в канал развиваются большие напряжения сдвига, то при течении в коротких каналах они не успевают снизиться к выходу и расплав вытекает с большой степенью ориентации, а коэффициент эластического восстановления больше, чем в длинных каналах. При увеличении длины каналов напряжения постепенно снижаются и на некотором расстоянии от входа в канал при переходе к установившемуся режиму течения становятся минимальными. Поэтому высокая степень ориентации, достигнутая на входе, постепенно, к выходу из канала уменьшается, что сказывается на значении коэффициента «разбухания» струи.

Используя аналогичный анализ, можно предсказать изменение Кэ с изменением других факторов, влияющих на реологические характеристики. Основным критерием оценки эластического восстановления должны служить напряжение сдвига и время релаксации. Так, применение конического участка на входе в канал позволяет значительно снизить Кэ, однако увеличение коэффициента будет наблюдаться до более высоких скоростей сдвига, поскольку напряжения сдвига на входе уменьшаются и неустойчивое, течение, т.е. срыв струи, сдвигается в область больших скоростей сдвига.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]