Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpora_po_vysshey_matematike_dlya_ekonomistov.docx
Скачиваний:
19
Добавлен:
14.04.2019
Размер:
1.58 Mб
Скачать

15. Линейная зависимость и независимость векторов. Базис. Разложение вектора по базису.

Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно , т.е. . Если же только при = 0 выполняется , то векторы называются линейно независимыми.

Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.

Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

Свойство 6. Любые 4 вектора линейно зависимы.

В частном случае, когда векторы , . . ., - элементы нек-рого числового поля К,a k - подполе в К, возникает понятие линейной независимости ч и с е л. Л. н. чисел над полем рациональных чисел Q можно рассматривать также, как обобщение понятия иррациональности. Так, числа a и 1 линейно независимы тогда и только тогда, когда a иррационально.

Пусть L, Р и S – прямая, плоскость и пространство точек соответственно и . Тогда – векторные пространства векторов как направленных отрезков на прямой L, на плоскости Р и в пространстве S соответственно.

Определение. Базисом векторного пространства называется любой ненулевой вектор , т.е. любой ненулевой вектор коллинеарный прямой L: и .

Обозначение базиса : – базис .

Определение. Базисом векторного пространства называется любая упорядоченная пара неколлинеарных векторов пространства .

, где , – базис

Определение. Базисом векторного пространства называется любая упорядоченная тройка некомпланарных векторов (т.е. не лежащих в одной плоскости) пространства .

– базис

Замечание. Базис векторного пространства не может содержать нулевого вектора: в пространстве по определению, в пространстве два вектора будут коллинеарные, если хотя бы один из них нулевой, в пространстве три вектора будут компланарные, т.е будут лежать в одной плоскости, если хотя бы один из трех векторов будет нулевой.

Разложение вектора по базису.

Определение. Пусть  – произвольный вектор,  – произвольная система векторов. Если выполняется равенство        ,то говорят, что вектор  представлен в виде линейной комбинации данной системы векторов. Если данная система векторов  является базисом векторного пространства, то равенство называется разложением вектора  по базису . Коэффициенты линейной комбинации  называются в этом случае координатами вектора  относительно базиса .

Теорема. (О разложении вектора по базису.)

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

    Доказательство. 1) Пусть L произвольная прямая (или ось) и – базис . Возьмем произвольный вектор . Так как оба вектора  и  коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что  и тем самым мы получили разложение вектора  по базису  векторного пространства .

   Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора  по базису  векторного пространства :

 и , где . Тогда  и используя закон дистрибутивности, получаем:

                       .

Так как , то из последнего равенства следует, что , ч.т.д.

2) Пусть теперь Р произвольная плоскость и  – базис . Пусть  произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведем прямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора  проведем прямую параллельную вектору  и  прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , ,  – базис ,  – базис .Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что   и . Отсюда получаем:

 и возможность разложения по базису доказана.  

Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора  по базису  векторного пространства :  и . Получаем равенство , откуда следует . Если , то , а т.к. , то  и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарности двух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно,  и , ч.т.д.

3) Пусть – базис  и пусть  произвольный вектор. Проведем следующие построения.

Отложим все три базисных вектора  и вектор  от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость  и плоскость ; далее через конец вектора  проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:

По правилу сложения векторов получаем равенство: .                                   

По построению . Отсюда, по теореме о коллинеарности двух векторов, следует, что существует число , такое что . Аналогично,  и , где . Теперь, подставляя эти равенства в, получаем                                

 и возможность разложения по базису доказана.

Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора  по базису :

  и . Тогда .      

   Заметим, что по условию векторы   некомпланарные, следовательно, они попарно неколлинеарные.

Возможны два случая:  или .

а) Пусть , тогда из равенства следует:    .                       

Из равенства следует, что вектор  раскладывается по базису , т.е. вектор  лежит в плоскости векторов  и, следовательно, векторы  компланарные, что противоречит условию.

б) Остается случай , т.е. .  Тогда из равенства получаем  или .  Так как – базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что  и , ч.т.д.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]