Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену по вычислительной математике.doc
Скачиваний:
54
Добавлен:
24.12.2018
Размер:
2.13 Mб
Скачать

15. Наиболее распространенные формулы численного дифференцирования.

16. Задачи и методы численного интегрирования. Квадратурные формулы.

Численное интегрирование (численная квадратура) – вычисление значения определённого интеграла(как правило, приближённое). Под численным интегрированием понимают набор численных методов отыскания значения определённого интеграла.

Численное интегрирование применяется, когда:

1) сама подынтегральная функция не задана аналитически. Например, она представлена в виде таблицы (массива) значений в узлах некоторой расчётной сетки.

2) Аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции. Например, f(x) = exp( − x2).

В этих двух случаях невозможно вычисление интеграла по формуле Ньютона-Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

Элементарные квадратурные формулы, полученные методом интерполяции

I. Формула прямоугольников

Число узлов , середина интервала

II. Формула трапеций

Число узлов , узлы располагаются в точках

Получим квадратурную формулу:

III. Формула прямоугольников, как формула с кратным узлом

Кратным узлом трапеции называется узел, в котором задается не только значение функции, но и значения некоторого числа его производных.

Интерполяционная функция, в которой используются как значения самой функции, так и значения некоторого числа ее производных, называется формулой Эрмита.

Квадратурная формула принимает вид:

Формула Симпсона получается методом интерполяции при следующих параметрах:

.

17. Численное интегрирование интерполяционными методами.

Одномерный случай:

Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида

где  — число точек, в которых вычисляется значение подынтегральной функции. Точки  называются узлами метода, числа  — весами узлов. При замене подынтегральной функции на полином нулевой, первой и второй степени получаются соответственно методы прямоугольников, трапеций и парабол (Симпсона). Часто формулы для оценки значения интеграла называют квадратурными формулами.

Метод Гаусса

Если мы можем выбирать точки, в которых мы вычисляем значения функции f(x), то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 2-го, а 3-го порядка точности:

.

В общем случае, используя n точек, можно получить метод с порядком точности 2n − 1. Значения узлов метода Гаусса по n точкам являются корнями полинома Лежандра степени n.

Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.

Методы Монте-Карло:

Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

ограничим функцию прямоугольником (n-мерным параллелепипедом в случае многих измерений), площадь которого Spar можно легко вычислить;

«набросаем» в этот прямоугольник (параллелепипед) некоторое количество точек (N штук), координаты которых будем выбирать случайным образом;

определим число точек (K штук), которые попадут под график функции;

площадь области, ограниченной функцией и осями координат, S даётся выражением 

Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.

Метод Гаусса-Кронрода

Недостаток метода Гаусса состоит в том, что он не имеет лёгкого (с вычислительной точки зрения) пути оценки погрешности полученного значения интеграла. Использование правила Рунге требует вычисления подынтегральной функции примерно в таком же числе точек, не давая при этом практически никакого выигрыша точности, в отличие от простых методов, где точность увеличивается в несколько раз при каждом новом разбиении. Кронродом был предложен следующий метод оценки значения интеграла

,

где xi — узлы метода Гаусса по n точкам, а 3n + 2 параметров aibiyi подобраны таким образом, чтобы порядок точности метода был равен 3n + 1.

Тогда для оценки погрешности можно использовать эмпирическую формулу:

,

где IG — приближённое значение интеграла, полученное методом Гаусса по n точкам.

Интегрирование при бесконечных пределах

Для интегрирования по бесконечным пределам нужно ввести неравномерную сетку, шаги которой нарастают при стремлении к бесконечности, либо можно сделать такую замену переменных в интеграле, после которой пределы будут конечны. Аналогичным образом можно поступить, если функция особая на концах отрезка интегрирования