Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электротехника_Лекции.doc
Скачиваний:
36
Добавлен:
23.12.2018
Размер:
27.57 Mб
Скачать

5.2 Включение цепи r, l к источнику постоянного напряжения.

Рис 5.1

Рассмотрим включение источника постоянного напряжения u(t)=U в цепь последовательно соединенных r, L элементов (рис 5.1). Для послекоммутационного периода (t>0 и t=0), применив закон Кирхгофа, получим:

(5.4)

а затем составим дифференциальные уравнения рассматриваемой цепи

(5.5)

полагая uL=L(di/dt)

Решение этого уравнения, согласно (5.3) можно считать известным

(5.6)

Первое слагаемое iПр есть частное решение уравнения (5.6) и выражает принужденное (установившееся) значение равное U/r. Второе слагаемое iСв=Aept представляет собой решение однородного уравнения, т.е. уравнения (5.5) при равенстве нулю правой части. Здесь p и A - соответственно корень характеристического уравнения и постоянная интегрирования. Для рассматриваемой цепи p= -r/L, а постоянная А определяется по начальному току в индуктивности i(0+). Так как ток в индуктивности до момента коммутации отсутствовал (нулевые начальные условия), то при t=0 для полного решения (5.6) имеет место

(5.7)

Именно здесь проявилось действие закон коммутации (5.1), распространено на полное решение. Окончательно из (5.6) находим, что

,

где - постоянная времени (5.8)

Переходное напряжение на индуктивности можно найти из формулы

Графики переходного тока и напряжения построенные по формулам (5.8) и (5.9) приведены на рис 5.2.

Чтобы оценить влияние параметров цепи на переходные процесс, свободную составляющую тока iСв для различных моментов времени, выраженных через t.

Тогда

,

и.т.д.

Следовательно постоянная времени t равна промежутку времени в течении которого свободная составляющая тока убывает в е раз. Практически можно считать, что переходный процесс заканчивается спустя t=(4..5)t.

5.3. Короткое замыкание цепи с резистором и индуктивностью.

Рассмотрим теперь цепь, питаемую от источника постоянного тока (рис 5.3), в которой после коммутации (замыкания ключа) индуктивность с током [i(0-)№0] оказывается замкнутой на резистор r2.

Рис 5.3

В образовавшемся при этом контуре благодаря энергии, запасенной в магнитном поле индуктивности, ток исчезает мгновенно: ЭДС самоиндукции, обусловленная убыванием магнитного потока, стремиться поддержать ток в контуре за счет энергии исчезающего магнитного поля. Принужденный ток в данном случае равен нулю, переходной ток в контуре являться свободным, постепенно приближающимся к нулю. Свободный ток удовлетворяет однородному дифференциальному уравнению:

,

общее решение которого

, (5.10)

A - постоянная интегрирования, вычисляемая из начальных условий:

(5.11)

где iПр(0-) - ток индуктивности в момент, непосредственно предшествующей короткому замыканию. При t=0 из (5.10) имеем:

, т.е. (5.12)

На рис 5.2 изображены графики спада тока и напряжения на индуктивности

(5.13)

С

энергетической точки зрения процесс короткого замыкания цепи r, L характеризуется тем, что вся запасенная в индуктивности до коммутации энергия ее магнитного поля

в течении переходного процесса выделяется в резисторе r в виде тепла.