Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ по матем..doc
Скачиваний:
99
Добавлен:
22.12.2018
Размер:
617.47 Кб
Скачать

Вопрос № 19-(39) Производные сложной и обратной функции

Производная сложной функции

Рассмотрим сложную функцию y = y(u(x))

Теорема 4. Если функции y = y(u), u = u(x) дифференцируемы (т.е. существуют производные y'u, u'x), тогда сложная функция y = y(u(x)) дифференцируема и y'x = y'u u'x.

Доказательство

Если аргумент x получит приращение Δx, то функция u получит приращение Δu = u(x + Δx) − u(x), а функция y получит приращение Δy = y(u + Δu) − y(u). Но тогда, воспользовавшись свойствами предела функции, получаем

Теорема доказана.

Производная обратной функции

Рассмотрим функцию y = f(x), для которой существует обратная функция x = g(y).

Теорема 5. Если обратная функция x = g(y) дифференцируема и g'(y) 0, то функция y=f(x) дифференцируема, и

Доказательство

Если аргумент x получит приращение Δx, то функция f получит приращение Δy = f(x + Δx) − f(x). С другой стороны, для обратной функции g приращения Δx, Δy связаны следующим образом: Δx=g(y + Δy) − g(y).

Тогда получаем

Теорема доказана.

Вопрос № 22-(42) Теорема Роля, Коши, Лангранжа о дифференцируемых функциях

Теорема Ролля. Если функция y= f(x) непрерывна на отрезке [a; b], дифференцируема во всех внутренних точках этого отрезка (т.е. на (а; b)) и на концах отрезка обращается в нуль f(a) = f(b) = 0, то на (a; b) найдется хотя бы одна точка c Î (a; b), в которой f'(c) = 0.

Теорема Лагранжа. Если функция y= f(x) непрерывна на [a; b] и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка [a; b] найдется хотя бы одна точка c, a<c<b такая, чтоf(b) – f(a)=f'(c)(b – a).

Теорема Коши. Если f(x) и g(x) – две функции, непрерывные на [a; b] и дифференцируемые внутри него, причем g'(x) ≠ 0 при всех x Î (a; b), то внутри отрезка [a; b] найдется хотя бы одна точка c Î (a; b), что .

Билет № 17-(37) Правило дифференцирования. Таблица производных

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) ' = 0, (cu) ' = cu';

2) (u+v)' = u'+v';

3) (uv)' = u'v+v'u;

4) (u/v)' = (u'v-v'u)/v2;

5) если y = f(u), u = j(x), т.е. y = f(j(x)) - сложная функция, или суперпозиция, составленная из дифференцируемых функций j и f, то , или

;

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем   ≠ 0, то .

Таблица производных

Вопрос № 16-(36)

Уравнение касательной и нормали к графику функции

Пусть функция задается уравнением y=f(x), нужно написать уравнение касательной в точке x0 . Из определения производной: y/(x)=limΔx→0ΔyΔx Δy=f(xx)−f(x).  Уравнение касательной к графику функции: y=kx+b (k,b=const). Из геометрического смысла производной: f/(x0)=tgα=k  Т.к. x0  и f(x0)∈  прямой, то уравнение касательной записывается в виде: yf(x0)=f/(x0)(xx0) , или y=f/(x0)·x+f(x0)−f/(x0)·x0. 

 

 Уравнение нормали

Нормаль -- это перпендикуляр к касательной (см. рисунок). Исходя из этого: tgβ=tg(2π−α)=ctgα=1tgα=1f/(x0)

Т.к. угол наклона нормали -- это угол β1, то имеем: tgβ1=tg(π−β)=−tgβ=−1f/(x). Точка (x0,f(x0))∈  нормали, уравнение примет вид: yf(x0)=−1f/(x0)(xx0).