Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

fotogrammy

.pdf
Скачиваний:
189
Добавлен:
26.03.2016
Размер:
41.03 Mб
Скачать

микроворсинки (5), за счет которых увеличивается поверхность всасывания,

а также здесь находится множество пищеварительных ферментов принимающих участие в пристеночном пищеварении. Клетки имеют хорошо развитую гранулярную (4) и агранулярную ЭПС, комплекс Гольджи (3),

много митохондрий. Это короткоживущие клетки (3 суток). Регенерация осуществляется за счет стволовых клеток.

Бокаловидные экзокриноциты (6) являются одноклеточными слизистыми железами. Располагаются поодиночке среди цилиндрических эпителиоцитов.

Функционируют циклически: накапливают и выделяют секрет. Последний находится в секреторных вакуолях (10). При накоплении секрета ядро смещается к базальной поверхности клетки. В клетках хорошо развиты агранулярная и гранулярная ЭПС (8), комплекс Гольджи (9). Секрет содержит углеводно-протеидные комплексы.

Количество бокаловидных клеток увеличивается по направлению к прямой кишке.

21

Назовите тип клетки. Аргументируйте вывод. Назовите структуры,

обозначенные цифрами.

Рис.7. Фибробласт рыхлой волокнистой соединительной ткани.

1.Отростки фибробласта. 2.Гранулярная ЭПС. 3.Комплекс Гольджи. 4.Ядро. 5.Митохондрии. 6.Коллагеновое волокно. 7.Эластическое волокно.

Фибробласты – основной тип клеток рыхлой волокнистой соединительной ткани. Источником развития фибробластов в эмбриогенезе является мезенхима. Стволовая клетка →полустволовая клетка-

предшественница →малоспециализированный фибробласт →фибробласт

→фиброцит. Функция фибробластов заключается в продукции всех компонентов межклеточного вещества (коллагеновых (6), эластических (7),

ретикулярных волокон и аморфной субстанции). Фибробласты осуществляют не только синтез, но также перестройку и частичное разрушение межклеточного вещества. Морфология этих клеток тесно связана с их синтетической активностью. Зрелый фибробласт – крупная отростчатая (1)

клетка со светлым ядром (4), содержащим 1-2 ядрышка. Цитоплазма содержит органеллы хорошо развитого синтетического аппарата – гранулярную эндоплазматическую сеть (2), цистерны которой часто растянуты, комплекс Гольджи (3). В цитоплазме располагаются также лизосомы и митохондрии (5). Хорошо выражены все элементы цитоскелета,

благодаря которым фибробласт обладает подвижностью, способностью изменять свою форму и обратимо прикрепляться к другим клеткам и волокнам. При старении фибробласты превращаются в малоактивную форму

– фиброциты.

22

К какой ткани относится клетка на схеме? Назовите тип клетки и структуры,

обозначенные цифрами.

Рис. 8. Макрофаг (гистиоцит) рыхлой волокнистой соединительной

ткани.

1.Отростки макрофага. 2.Фагоцитоз. 3.Пиноцитоз. 4.Фаголизосома. 5.Лизосома. 6.Гранулярная ЭПС. 7.Комплекс Гольджи. 8.Ядро. 9.Митохондрия. 10.Межклеточное вещество рыхлой волокнистой соединительной ткани.

Макрофаги образуются из моноцитов крови после их миграции в соединительную ткань из кровеносных сосудов. Различают свободные макрофаги – это макрофаги рыхлой волокнистой соединительной ткани

(РВСТ), серозных полостей, альвеолярные макрофаги, макрофаги воспалительных экссудатов. Фиксированные – в селезенке, лимфоузлах,

внутриэпидермальные макрофаги, макрофаги ворсин плаценты, микроглия

23

ЦНС. Ядра макрофагов (8) небольшого размера, овальной или бобовидной формы. В соединительной ткани макрофаги могут находиться как в покоящемся, так и в активном состоянии (блуждающие макрофаги).

Покоящиеся макрофаги имеют уплощенную форму, плотное ядро и небольшое количество органелл. Неактивные макрофаги обычно прикреплены к коллагеновым волокнам. Блуждающие макрофаги, напротив,

высоко подвижны, поверхность их неровная, с многочисленными выростами

– псевдоподиями, микроворсинками.

При электронной микроскопии в активных макрофагах выявляются множество лизосом (5), фагоцитированные частицы, фаголизосомы (4),

митохондрии (9), гранулярная (6) и агранулярная ЭПС, включения гликогена,

элементы цитоскелета. На поверхности цитолеммы макрофаги несут рецепторы для медиаторов иммунной системы, нейромедиаторов, гормонов,

молекулы адгезии, позволяющие им мигрировать, взаимодействовать с другими клетками и межклеточным веществом.

Функции макрофагов многообразны: 1) Распознавание, поглощение и расщепление с помощью ферментов микроорганизмов и других антигенов,

погибших клеток, компонентов межклеточного вещества. 2)

Антигенпредставляющая: переработка антигенов и передача информации об антигенах Т-лимфоцитам, благодаря этой функции макрофаги участвуют в запуске иммунных реакций. 3) Секреция веществ, регулирующих функции других клеток РВСТ, иммунокомпетентных клеток, стимулирующих регенерацию, противовирусных (интерферон) и антибактериальных

(лизоцим) факторов.

24

Назовите клетку. Аргументируйте ответ. Укажите тип электронной микроскопии.

Рис. 9 Фиброцит рыхлой волокнистой соединительной ткани. Клетка веретеновидной формы с тонкими отростками. В цитоплазме видны митохондрии и гранулярная ЭПС. В межклеточном веществе расположены многочисленные коллагеновые волокна. Трансмиссионная электронная микроскопия. Ув. 7000.

25

Назовите клетку. Аргументируйте ответ. Укажите тип электронной микроскопии.

Рис. 10. Макрофаг рыхлой волокнистой соединительной ткани. Клетка распластана по поверхности культурального сосуда, видна центральная часть, содержащая ядро и многочисленные отростки. Сканирующая электронная микроскопия. Ув. 4300.

Назовите клетку, изображенную на электронной микрофотографии. Укажите признаки, характерные для данного вида клеток. Определите тип электронной микроскопии.

Рис. 11. Тучная клетка (тканевой базофил) рыхлой волокнистой

соединительной ткани. Цитоплазма клетки заполнена крупными

специфическими гранулами. Трансмиссионная электронная микроскопия.

Ув. 11400.

26

Назовите тип клетки и вариант микроскопии. Аргументируйте свои выводы.

Рис. 12. Тучная клетка (лаброцит, тканевой базофил) рыхлой

волокнистой соединительной ткани в момент дегрануляции.

Сканирующая электронная микроскопия.

1.Гранулы тучной клетки.

Тучные клетки – постоянный компонент рыхлой волокнистой соединительной ткани. Обнаруживаются всюду, где есть рыхлая волокнистая соединительная ткань. Относятся к потомкам стволовой клетки крови.

Тучные клетки располагаются преимущественно около мелких сосудов. Они многочисленны в дерме, собственной пластинке слизистых оболочек, строме молочной железы и тимуса. Их количество возрастает в активно функционирующих органах: в лактирующей молочной железе, в матке при беременности, в щитовидной железе при гиперфункции, в очагах воспаления,

в опухолях и по периферии заживающих ран.

Тучные клетки имеют округлую форму (диаметр 20-30 мкм),

поверхность с многочисленными выростами. Однако, они могут иметь

27

неправильную форму, овальную, иногда с отростками, что связано с их способностью к амебоидным движениям. Ядро небольших размеров,

округлое с умеренным содержанием гетерохроматина. Цитоплазма содержит умеренно развитые органеллы и многочисленные гранулы, величина и состав которых вариабельны.

Гранулы тучных клеток сходны по составу с гранулами базофилов, имеют диаметр до 1 мкм. Они содержат гепарин, гистамин, дофамин,

хондроитинсульфаты, гиалуроновую кислоту, хемотаксические факторы эозинофилов и нейтрофилов, ферменты (протеазы, гидролазы, катепсин G).

Малые дозы этих биологически активных веществ секретируются клеткой постоянно, регулируя тем самым тонус и проницаемость сосудов.

Активация и быстрая массивная дегрануляция тучных клеток наступает после связывания их рецепторов с IgЕ (аллергическая реакция), белками комплемента, цитокинами, нейропептидами (вещество Р, соматостатин),

протеиназами. Кроме выброса содержимого гранул тучные клетки выделяют эйкозаноиды (простагландины, лейкотриены), фактор активации тромбоцитов, цитокины (ИЛ-1, -2, -3, -4, -5, -6 и др.). Результатом дегрануляции тучных клеток являются разнообразные реакции, связанные со спазмом гладких мышц, расширением сосудов, повышением их проницаемости, хемотаксисом нейтрофилов, эозинофилов, макрофагов,

фибробластов. Выделение различных ферментов вызывает разрушение компонентов межклеточного вещества, нередко повреждение тканей. Вместе

стем, некоторые вещества, вырабатываемые тучными клетками,

стимулируют репаративные процессы.

Количество тучных клеток вариабельно и изменяется в зависимости от физиологического состояния.

Клинические проявления дегрануляции тучных клеток включают бронхоспазм, острый ринит, отеки, кожный зуд, диарею, падение кровяного давления. Вещества, блокирующие дегрануляцию тучных клеток, нашли

28

широкое применение для лечения и профилактики аллергических заболеваний.

В цитоплазме тучных клеток содержаться липазы, АТФ-аза, щелочная фосфатаза, цитохромоксидаза, гистидиндекарбоксилаза (является маркером)

и другие ферменты.

Метод сканирующей электронной микроскопии позволяет изучить поверхность клетки в трехмерном пространстве. При данном виде электронной микроскопии пучок электронов пробегает по поверхности обьекта. Полученная информация передается на электронно-лучевую трубку.

Изображение получают в отраженных или вторичных электронах.

Фиксированный и высушенный обьект при данном методе покрывают тонким слоем испаренного металла (золото). Отражаясь от него электроны попадают в приемное устройство, которое передает сигнал на электронно-

лучевую трубку. За счет огромной глубины фокуса сканирующего электронного микроскопа (она больше, чем у просвечивающего) получается почти трехмерное изображение.

29

Назовите тип клетки. Аргументируйте вывод. Назовите структуры,

обозначенные цифрами?

Рис. 13. Плазматическая клетка (плазмоцит).

1.Цитолемма. 2.Ядро. 3.Хроматин. 4.Комплекс Гольджи. 5.Митохондрии. 6.Гранулярная эндоплазматическая сеть. 7.Секреторные вакуоли.

Плазматические клетки в процессе дифференцировки развиваются из В-лимфоцитов. Эти клетки обеспечивают выработку антител – гамма-

глобулинов при появлении в организме антигена, т.е. участвуют в гуморальном иммунитете. Плазматические клетки образуются в лимфоидных органах. Из стимулированных В-лимфоцитов образуются В-лимфобласты,

которые размножаются и часть из них приобретает способность к синтезу антител и становится плазмобластами, которые затем превращаются в плазмоциты. Плазмобласты-крупные клетки с большим количеством рибосом и небольшим числом уплощенных цистерн гранулярной эндоплазматической сети. Ядро содержит деконденсированный хроматин.

Плазмоцит имеет меньшие размеры. Величина плазмоцитов от 7 до 10 мкм.

Форма округлая или овальная. Ядро (2) лежит эксцентрично, хроматин (3)

более компактный, расположен группами около ядерной оболочки (имеет вид колеса со спицами). Около ядра видна зона более светлой цитоплазмы, в

которой расположен комплекс Гольджи (4). Большое количество концентрически расположенных узких канальцев гранулярной эндоплазматической сети (6).

Цитоплазма резко базофильна (практически вся заполнена массой крупных цистерн гранулярной эндоплазматической сети, в которой синтезируются белки). Базофилия отсутствует только в небольшой светлой зоне цитоплазмы около ядра, где расположен аппарат Гольджи. Плазмоциты встречаются в рыхлой соединительной ткани собственного слоя слизистых оболочек полых органов, сальнике, лимфатических узлах, селезенке, красном костном мозге.

Количество плазмоцитов увеличивается при различных инфекционно-

аллергических реакциях, воспалительных заболеваниях.

30

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]