Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология.docx
Скачиваний:
250
Добавлен:
25.03.2016
Размер:
1.08 Mб
Скачать

20. Специфичность действия ферментов.Изоферменты. Изоферменты

Это разновидности одного и того же фермента, катализирующиеодну и ту же химическую реакцию, но отличающиеся по первичной структуре белка. Различные изоферменты определяют скорость и направление реакции благодаря разному сродству к субстрату.

Например, димерный фермент креатинкиназа (КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 – по одной М и В субъединице, активна в миокарде, креатинкиназа-3 содержит две М-субъединицы, специфична для скелетной мышцы. Креатинкиназа (цитозольный и митохондриальный фермент) обратимо катализирует в клетках многих тканей реакцию переноса фосфатного остатка между АТФ и креатином:

Креатин + АТФ --------- Креатинфосфат + АДФ.

Изоферменты креатинкиназы

Изоферменты лактатдегидрогеназы

Также существует пять изоферментов лактатдегидрогеназы – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ.heart– сердце) и М (англ.muscle– мышца). Лактатдегидрогеназы типов 1 (Н4) и 2 (H3M1) присутствуют в тканях саэробным обменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (H1M3) и ЛДГ-5 (М4) находятся в тканях, склонных канаэробному обмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях спромежуточным типом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (H2M2).

Пируват + НАДН --------------------Лактат + НАД++ Н+

Мультиферментные комплексы

В мультиферментном комплексе несколько разных ферментовпрочно связаны между собой в единый комплекс и осуществляют ряд последовательныхразных реакций, но обеспечивающихединый процесс. В этом случае, продукт первой реакции непосредственно передается на следующий фермент и является исходным веществом, т.е. субстратом для второй реакции и так далее до завершения процесса окончательно. Благодаря таким комплексамзначительно ускоряется скоростьпревращения молекул.

Строение мультиферментного комплекса

  • пируватдегидрогеназный комплекс (пируватдегидрогеназа), превращающий пируват в ацетил-SКоА,

  • α-кетоглутаратдегидрогеназный комплекс (в цикле трикарбоновых кислот) превращающий α-кетоглутарат в сукцинил-SКоА,

  • комплекс под названием "синтаза жирных кислот" (илипальмитатсинтаза), синтезирующий пальмитиновую кислоту.

Конец формы

2 Теории, объясняющие суть действия ферментов.

  1. Адсорбционная:считалось, что фермент, как магнит притягивает (адсорбирует) на себя молекулы субстрата, их концентрация у активного центра повышается и реакция идет быстрее. Это устаревшая теория, и имеет только исторический интерес.

  2. Теория промежуточных фермент-субстратных комплексовобъясняет механизм действия ферментов тем, что фермент: связывается с субстратом и образует комплекс фермент-субстрат, этот комплекс превращается в другой, третий, где происходит напряжение, деформация субстрата, формируются и отделяются от фермента уже конечные продукты реакции. Вместо одной реакции с высоким энергетическим барьером, идут несколько новых с низким.

    1. А + В (субстраты) Е (фермент)--------------- С (продукт)

А + Е -------- АЕ1 (комплекс 1)------ АЕ2(комплекс 2)

АЕ2 + В ------ С (продукт) + Е (исходный неизмененный фермент)

2.E+S--------ES--------EZ-------EP-------E+P

S– субстрат,P- продукт,Z- переходное состояние

Т.е. при фермент-субстратном взаимодействии происходят:

1. сближение и необходимая ориентация субстратов,

2.удаление гидратной оболочки субстрата (внутри активного центра создаются другие условия, чем в растворе),

3.ослабляется разрываемая связь между атомами субстрата (при связывании происходит индуцированноесубстратом конформационное изменение фермента и его активного центра, образуетсяфермент-субстратный комплекс; индуцированное соответствие обеспечивает эффективный ферментативный процесс, но не вносит решающий вклад в увеличение скорости реакции;каталитическая активность ферментов связана с их непосредственным участием в самих процессах разрыва и образования новых связей),

4.стабилизация переходного состояния, образующегося в результате взаимодействия между субстратом и аминокислотными остатками активного центра фермента или кофактором, достижение котороготребует значительно меньшей энергии активации.

В общем виде все сводится к комплементарному взаимодействию фермента и субстрата. При этом функциональные группы субстрата взаимодействуют с соответствующими им функциональными группами фермента. Наличие субстратной специфичностиобъясняют две теории:Фишера и Кошланда.

1. Теория Фишера (модель "жесткой матрицы", "ключ-замок") – активный центр фермента строго соответствует конфигурации субстрата и не изменяется при его присоединении. Эта модель хорошо объясняет абсолютную специфичность, но не групповую.

2. Теория Кошланда (модель "индуцированного соответствия", "рука-перчатка") – подразумевает гибкость активного центра (т.е. сначала активный центр не соответствует – не комплементарен субстрату). Присоединение субстрата к якорному участку фермента вызывает изменение конфигурации каталитического центра таким образом, чтобы его форма соответствовала форме субстрата (индуцированное, наведенное соответствие).

В тот момент, когда субстрат(S) полностью заполняет собой активный центр, максимально возрастает степень разрыхления его химических связей, и он преобразуется в промежуточное вещество, которое в последствие получает дополнительные порции (кванты) тепловой энергии и образует продукт реакции (Р). Продукт реакции связан с активным центром менее прочно и покидает активный центр.

Активный центр фермента лучше согласован со структурой субстрата в переходном состоянии, чем со структурой субстрата в свободной форме, и следующая запись ферментативного процесса показывает, что субстрат в активном центре приобретает возбужденное состояние последовательно, в несколько этапов:

E + S ------ ES ------ ES* ------ ES** ------ ES*** ------ EP ---- E + P