Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vvedenie_v_sensoriku.doc
Скачиваний:
98
Добавлен:
31.05.2015
Размер:
6.67 Mб
Скачать

6.5. Полупроводниковые фотоэлементы

Полупроводниковый фотоэлемент – это прибор с выпрямляющим переходом для непосредственного преобразования световой энергии в электрическую.

Рассмотрим p-n переход при освещении при прямом напряжении (рис. 6.6). Такой режим называется режимом генерации фотоэдс, т.к. происходит генерация носителей заряда. Электрическое поле их разделяет, в результате накопления электронов в n-области и дырок в р-области возникает дополнительная разность потенциалов – фотоэдс.

Фотоэлементы применяют в виде солнечных батарей. Обычно для этого используется Si. В p-Si p-n переход создается диффузией P или Sb.

Характеристики фотоэлементов:

– точка пересечения ВАХ с осью напряжения соответствует значениям фотоэдс или напряжениям холостого хода при разных освещенностях ( у Si это 0,5 – 0,55 В);

– точка пересечения с осью тока соответствует токам короткого замыкания ( у Si это 20 – 25 мА/см2);

– световая характеристика – зависимость фотоэдс и тока короткого замыкания от светового потока или освещенности;

– спектральная характеристика – зависимость тока короткого замыкания от длины волны. Спектральная зависимость фотоэлементов аналогична спектральным характеристикам фотодиодов, изготовленных из того же полупроводника. Максимум спектральной зависимости кремниевых фотоэлементов соответствует максимуму спектрального распределения энергии солнечного света. Поэтому именно фотоэлементы из Si используют для создания солнечных батарей;

– коэффициент полезного действия – это отношение максимальной мощности, которую можно получить от фотоэлемента, к полной мощности светового потока, падающего на рабочую поверхность. К.п.д. кремниевых фотоэлементов при преобразовании солнечной энергии не превышает 12 %. Его можно повысить, если вместо Si использовать CdTe, GaAs или другие материалы с большей шириной запрещенной зоны, чем у Si, или используя фотоэлементы с гетеропереходами.

6.6. Фототранзисторы

Структура биполярного транзистора изображена на рис. 6.7. Транзистор включают по схеме с общим эмиттером. Базовый вывод не подключают (IБ = 0). Неосновные носители заряда (дырки в n-базе и электроны в р-коллекторе) втягиваются в коллекторный переход, проходят через него и создают фототок IФ . Накопленные в базе неравновесные основные носители понижают высоту потенциальных барьеров эмиттерного и коллекторного переходов. Увеличивается инжекция дырок из эмиттера в базу. Возрастает и ток коллектора. Накопленный в базе дополнительный заряд неравновесных основных носителей обеспечивает усиление фототока. Поэтому фототранзистор можно рассматривать как фотодиод, соединенный с транзистором: первый выдает фототок IФ базы, а второй обеспечивает усиление.

Рис. 6.7. Структура биполярного фототранзистора

При подключении вывода базы к внешней схеме часть неравновесных носителей уходит из базы, что ведет к понижению фототока. Поэтому наибольшая чувствительность к облучению светом базовой области будет при включении по схеме с общим эмиттером и отключенной базой. В связи с этим в первых конструкциях биполярных фототранзисторов вывод базы отсутствовал. В настоящее время его делают для электрического управления работой, для компенсации внешних воздействий.

Основные параметры фототранзисторов определяются аналогично параметрам фотодиодов. Например, параметры германиевого транзистора ФТ-1: Uраб = 3 В, Iт = 300 мкА, К = 170 – 500 мА/лм, τс = 200 мкс, светочувствительная площадка 2 мм2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]