Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Advanced Wireless Networks - 4G Technologies

.pdf
Скачиваний:
47
Добавлен:
17.08.2013
Размер:
21.94 Mб
Скачать

658

ACTIVE NETWORKS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GUID

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference

 

 

 

 

 

Attributes

 

 

 

 

 

 

 

Service name

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Service price

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE

 

 

Body

 

 

Service

 

 

 

 

 

 

 

 

Service material

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Migration

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Communication

 

 

 

 

 

 

 

 

Energy exchange

 

 

 

 

 

Behaviors

 

 

and storage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lifecycle regulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relationship

 

 

 

 

 

 

 

 

maintenance

 

 

 

 

 

 

 

 

Discovery

 

 

 

 

 

 

 

 

Pheromone emission

 

 

 

 

 

 

 

 

Environment sensing

 

 

 

 

 

 

 

 

Figure 16.20 Design of a CE.

and contains materials relevant to the service (e.g. data, application code or user profiles). CE behaviors implement nonservice-related actions that are inherent to all CEs. Examples of behavior include migration, reproduction and energy exchange. More information on different segments of the architecture can be found in Suzuki et al. [130].

REFERENCES

[1]D.S. Alexander, M. Shaw, S. Nettles and J. Smith, Active bridging, in Proc. ACM SIGCOMM Conf., 1997, pp. 101–111.

[2]B. Schwartz, A.W. Jackson, W.T. Strayer, W. Zhou, D. Rockwell and C. Partridge, Smart packets for active networks, ACM Trans. Comput. Syst., vol. 18, no. 1, 2000, pp. 67–88.

[3]D. Tennenhouse and D. Wetherall, Toward an active network architecture, Comput. Commun. Rev., vol. 26, no. 2, 1996.

[4]D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall and G.J. Minden, A survey of active network research, IEEE Commun., vol. 35, 1997, pp. 80–86.

[5]D.S. Alexander, W.A. Arbaugh, M.W. Hicks, P. Kakkar, A.D. Keromytis, J.T. Moore, C.A. Gunter, S.M. Nettles and J.M. Smith, The SwitchWare active network architecture, IEEE Network, 1998, pp. 29–36.

[6]FAIN – Future Active IP Networks. Available at: www.ist-fain.org/publications/ publications.html

[7]B. Carpenter and S. Brim, Middleboxes: Taxonomy and Issues. Internet Engineering Task Force, RFC 3234. Available at: www.iets.org, February 2002.

[8]T. Hain, Architectural Implications of NAT. Internet RFC 2993, Available at: www.iets.org, November 2000.

[9]P. Srisuresh and K. Egevang, Traditional IP Network Address Translator (Traditional NAT). Internet RFC 3022. Available at: www.iets.org, January 2001.

[10]M. Holdrege and P. Srisuresh, Protocol Complications With the IP Network Address Translator. Internet RFC 3027. Available at: www.iets.org, January 2001.

REFERENCES 659

[11]G. Tsirtsis and P. Srisuresh, Network Address Translation – Protocol Translation

(NAT-PT). Internet RFC 2766. Available at: www.iets.org, February 2000.

[12]M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas and L. Jones, SOCKS Protocol Version 5. Internet RFC 1928. Available at: www.iets.org, March 1996.

[13]S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, An Architecture for Differentiated Service. Internet RFC 2475. Available at: www.iets.org, December 1998.

[14]J. Border, M. Kojo, J. Griner, G. Montenegro and Z. Shelby, Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations. Internet RFC 3135. Available at: www.iets.org, June 2001.

[15]N. Freed, Behavior of and Requirements for Internet Fire-Walls. Internet RFC 2979. Available at: www.iets.org, October 2000.

[16]B. Cheswick and S. Bellovin, Firewalls and Internet Security: Repelling the Wily Hacker. Addison-Wesley: Reading, MA, 1994.

[17]M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg, SIP: Session Initiation Protocol. Internet RFC 2543. Available at: www.iets.org, March 1999.

[18]F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen and J. Segers, Megaco Protocol 1.0. Internet RFC 3015. Available at: www.iets.org, November 2000.

[19]R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. BernersLee. Hypertext Transfer Protocol – HTTP/1.1. Internet RFC 2616. Available at: www.iets.org, June 1999.

[20]IETF Forwarding Control Element Separation Working Group Home Page; www.ietf.org/html.charters/forces-charter.html

[21]C. Partridge, A.C. Snoeren, W.T. Strayer, B. Schwartz, M. Condell and I. Castineyra, FIRE: flexible intra-AS routing environment, IEEE J. Select. Areas Commun., vol. 19, no. 3, 2001, pp. 410–425.

[22]J. Biswas, A.A. Lazer, J.-F. Huard, K. Lim, H. Mahjoub, L.-F. Pau, M. Suzuki, S. Torstensson, W. Wang and S. Weinstein, The IEEE P1520 standards initiative for programmable network interfaces, IEEE Commun. Mag., vol. 36, no.10, 1998, pp. 64–70.

[23]IEEE P1520.2, Draft 2.2, Standard for Application Programming Interfaces for ATM Networks. Available at: www.ieee-pin.org/pin-atm/intro.html

[24]IETF ForCES; www.ietf.org/html.charters/ forces-charter.html

[25]IETF For CES, Draft-IETF-Forces-Framework-04.txt. Available at: www.ietf.org/ internet-drafts/draft-ietf-forces-framework-04.txt, 2002.

[26]D.J. Wetherall, J.V. Guttag and D.L. Tennenhouse, ANTS: a Toolkit For Building and Dynamically Deploying Network Protocols IEEE Openarch. Available at: ftp://ftp.tns.lcs.mit.edu/pub/papers/openarch98.ps.gz, 1998.

[27]D. Decasper, G. Parulkar, S. Choi, J. DeHart, T. Wolf and B. Plattner, A Scalable, High Performance Active Network Node IEEE Network. Available at: www.tik.ee.ethz.ch/ dan/papers/ieee ann 1.pdf

[28]B. Schwartz, A.W. Jackson, W.T. Strayer, W. Zhou, D. Rockwell and C. Partridge, Smart Packets for Active Networks OPENARCH’99. Available at: ftp://ftp.bbn.com/pub/AIR/smart.ps, 1999.

[29]D. Scott Alexander, W.A. Arbaugh, M.W. Hicks, P. Kakkar, A.D. Keromytis, J.T. Moore, C.A. Gunter, S.M. Nettles and J.M. Smith, The switchware active network architecture, IEEE Network, vol. 12, 1998, pp. 29–36.

660ACTIVE NETWORKS

[30]K.L. Calvert (ed.), Architectural Framework for Active Networks Draft Version 1.0. Available at: protocols.netlab.uky.edu/ calvert/arch-latest.ps, 1999.

[31]L. Peterson (ed.), Node OS interface specification AN node OS working group. Available at: www.cs.princeton.edu/nsg/papers/nodeos-02.ps, 2001.

[32]K. Calvert, S. Bhattacharjee, E. Zegura and J. Sterbenz, Directions in active networks, IEEE Commun., vol. 36, 1998, pp. 72–78.

[33]A.T. Campbell, H. De Meer, M.E. Kounavis, K. Miki, J. Vicente and D. Villela, A survey of programmable networks . ACM Comput. Commun. Rev. April, 1999.

[34]Initial Active Network and Active Node Architecture FAIN Project Deliverable 2. Available at: www.ist-fain.org/deliverables/del2/d2.pdf

[35]Revised Active Network and Active Node Architecture FAIN Project Deliverable 4. Available at: www.ist-fain.org/deliverables/del4/d4.pdf

[36]S.-K. Song et al., Evolution in Action: Using Active Networking to Evolve Network Support for Mobility, J. Sterbenz et al. (eds). IWAN 2002. LNCS 2546, Springer: Berlin, 2002, pp. 146–161.

[37]C. Prehofer and Q. Wei, Active Networks for 4G Mobile Communication:Motivation, Architecture, and Application Scenarios, J. Sterbenz et al. (eds). IWAN 2002, LNCS 2546. Springer: Berlin, 2002, pp. 132–145.

[38]D.J. Wetherall, J. Guttag and D.L. Tennenhouse. ANTS: a toolkit for building and dynamically deploying network protocols, in IEEE OPENARCH, April 1998, pp. 117– 129.

[39]B. Schwartz, A.W. Jackson, W.T. Strayer, W. Zhou, R.D. Rockwell and C. Partridge. Smart packets: Applying active networks to network management, ACM Trans. Comput. Systems, vol. 18, no. 1, February 2000.

[40]M. Hicks, P. Kakkar, J.T. Moore, C.A. Gunter and S. Nettles. PLAN: a packet language for active networks, in Proc. Third ACM SIGPLAN Int. Conf. Functional Programming. ACM, 1998, pp. 86–93.

[41]WWRF, Wireless World Research Forum (WWRF); www.wireless-worldresearch. org/

[42]M. Kounavis and A. Campbell, Design, Implementation and Evaluation of Programmable Handoff in Mobile Networks, Mobile Networks and Applications, vol. 6. Kluwer Academic: Norwell, MA, 2001, pp. 443–461.

[43]H.J. Wang, R.H. Katz and J. Giese, Policy-enabled handoffs across heterogeneous wireless networks, in WMCSA 99, New Orleans, LA, 25–26 February 1999, pp. 51– 60.

[44]E. Gelenbe, Z. Xu and E. Seref, Cognitive packet networks, 11th IEEE Int. Conf. Tools with Artificial Intelligence, 9–11 November 1999, pp. 47–54.

[45]E. Gelenbe, R. Lent and A. Nunez, Self-aware networks and QoS, Proc. IEEE, vol. 92, no. 9, 2004, pp. 1478–1489.

[46]R.E. Ramos and K. Madani, A novel generic distributed intelligent re-configurable mobile network architecture, in IEEE VTS 53rd Vehicular Technology Conf. vol. 3, 6–9 May 2001, pp. 1927–1931.

[47]T. Kocak and J. Seeber, Smart packet processor design for the cognitive packet network router, in The 2002 45th Midwest Symp. Circuits and Systems, MWSCAS2002, vol. 2, 4–7 August 2002, pp. II-513–II-516.

[48]X. Hu, A.N. Zincir-Heywood and M.I. Heywood, Testing a cognitive packet concept on a LAN, in IEEE CCECE 2002. Canadian Conf. Electrical and Computer Engineering, vol. 3, 12–15 May 2002, pp. 1577–1582.

REFERENCES 661

[49]Y. Miao, Z.-Q. Liu, C.K. Siew and C.Y. Miao, Dynamical cognitive network – an extension of fuzzy cognitive map, IEEE Trans. Fuzzy Syst., vol. 9, no. 5, 2001,

pp.760–770.

[50]J. Neel, R.M. Buehrer, B.H. Reed and R.P. Gilles, Game theoretic analysis of a network of cognitive radios, in The 2002 45th Midwest Symp. Circuits and Systems.

MWSCAS-2002, vol. 3, 4–7 August 2002, pp. III-409–III-412.

[51]E. Gelenbe, M. Gellman, R. Lent, P. Liu and P. Su, Autonomous smart routing for network QoS, in Int. Conf. Autonomic Computing, 17–18 May 2004, pp. 232–239.

[52]W.-R. Zhang, S.-S. Chen, W. Wang and R.S. King, A cognitive-map-based approach to the coordination of distributed cooperative agents, IEEE Trans. Syst. Man Cybernet., vol. 22, no. 1, 1992, pp. 103–114.

[53]J.O. Neel, J.H. Reed and R.P. Gilles, Convergence of cognitive radio networks, in

2004 IEEE Wireless Communications and Networking Conf., WCNC, vol. 4, 21–25 March 2004, pp. 2250–2255.

[54]P. Mahonen, Cognitive trends in making: future of networks, in 15th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, PIMRC 2004, vol. 2, 5–8 September 2004, pp. 1449–1454.

[55]R. Viswanathan and K.S. Narendra, Comparison of expedient and optimal reinforcement schemes for learning systems, J. Cybernet. vol. 2, 1972, pp. 21–37.

[56]K.S. Narendra and P. Mars, The use of learning algorithms in telephone traffic routing – a methodology, Automatica, vol. 19, 1983, pp. 495–502.

[57]E. Gelenbe, Learning in the recurrent random neural network, Neural Comput., vol. 5, no. 1, 1993, pp. 154–164.

[58]P. Mars, J.R. Chen and R. Nambiar, Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications. CRC Press: Boca Raton, FL, 1996.

[59]D.L. Tennenhouse, J.M. Smith, D.W. Sincoskie, D.J. Wetherall and G.J. Minden, A survey of active network research, IEEE Commun. Mag., vol. 35, no. 1, 1997,

pp.80–86.

[60]M. Bregust and T. Magedanz, Mobile agents-enabling technology for active intelligent network implementation, IEEE Network Mag., vol. 12, no. 3, 1998, pp. 53–60.

[61]T. Faber, ACC: using active networking to enhance feedback congestion control mechanisms, IEEE Network Mag., vol. 12, no. 3, 1998, pp. 61–65.

[62]S. Rooney, J.E. van der Merwe, S.A. Crosby and I.M. Leslie, The tempest: a framework for safe, resource-assured, programmable networks, IEEE Commun. Mag. vol. 36, no. 10, 1998, pp. 42–53.

[63]J.-F. Huard and A.A. Lazar, A programmable transport architecture with QoS guarantee, IEEE Commun., vol. 36, no. 10, 1998, pp. 54–63.

[64]J. Biswas, A.A. Lazar, S. Mahjoub, L.-F. Pau, M. Suzuki, S. Torstensson, W. Wang and S. Weinstein, The IEEE P1520 standards initiative for programmable network interface, IEEE Commun., vol. 36, no. 10, 1998, pp. 64–72.

[65]K.L. Calvert, S. Bhattacharjee, E. Zegura and J. Sterbenz, Directions in active networks, IEEE Commun., vol. 36, no. 10, 1998, pp. 64–72,

[66]W. Marcus, I. Hadzic, A.J. McAuley and J.M. Smith Protocol boosters: applying programmability to network infrastructures, IEEE Commun., vol. 36, no. 10, 1998,

pp.79–83.

[67]D.S. Alexander, W.A. Arbaugh, A.D. Keromytis and J.M. Smith, Safety and security of programmable networks infrastructures, IEEE Commun., vol. 36, no. 10, 1998,

pp.84–92.

662ACTIVE NETWORKS

[68]E. Gelenbe, Zhi-Hong Mao and Y. Da-Li, Function approximation with spiked random networks, IEEE Trans. Neural Networks, vol. 10, no. 1, 1999, pp. 3–9.

[69]D. Fudenberg and J. Tirole, Game Theory. MIT Press: Cambridge, MA, 1991.

[70]J. Friedman and C. Mezzetti, Learning in games by random sampling, J. Econ. Theory, vol. 98, 2001, pp. 55–84.

[71]E. Altman and Z. Altman. S-modular games and power control in wireless networks, IEEE Trans. Autom. Control, vol. 48, 2003, pp. 839–842.

[72]D. Monderer and L. Shapley, Potential games, Games Econ. Behav., vol. 14, 1996, pp. 124–143.

[73]T. Ui, A shapley value representation of potential games, Games Econ. Behav., vol. 14, 2000, pp. 121–135.

[74]A. MacKenzie and S. Wicker, Game theory in communications: motivation, explanation, and application to power control, in Globecom 2001, pp. 821–825.

[75]R. Yates, A framework for uplink power control in cellular radio systems, IEEE J. Select. Areas Commun., vol. 13, no. 7, 1995, pp. 1341–1347.

[76]D. Goodman and N. Mandayam. Power control for wireless data, IEEE Person. Commun., April 2000, pp. 48–54.

[77]C. Sung and W. Wong, A noncooperative power control game for multirate CDMA data networks, IEEE Trans. Wireless Commun., vol. 2, no. 1, 2003, pp. 186–219.

[78]C. Saraydar, N. Mandayam and D. Goodman, Pareto efficiency of pricing-based power control in wireless data networks, Wireless Commun. Networking Conf., 21–24 September 1999, pp. 231–235.

[79]J.P. Hespanha and S. Bohacek, Preliminary results in routing games, in Proc. 2001 American Control Conf., vol. 3, 25–27 June 2001, pp. 1904–1909.

[80]R. Kannan and S.S. Iyengar, Game-theoretic models for reliable path-length and energy-constrained routing with data aggregation in wireless sensor networks, IEEE J. Select. Areas Commun., vol. 22, no. 6, 2004, pp. 1141–1150.

[81]V. Anantharam, On the Nash dynamics of congestion games with player-specific utility, in 43rd IEEE Conf. Decision and Control, CDC, vol. 5, 14–17 December 2004, pp. 4673–4678.

[82]A.A. Economides and J.A. Silvester, A game theory approach to cooperative and non-cooperative routing problems, in SBT/IEEE Int. Telecommunications Symp. ITS ’90 Symposium Record, 3–6 September 1990, pp. 597–601.

[83]A.A. Economides and J.A. Silvester, Multi-objective routing in integrated services networks: a game theory approach, in INFOCOM ’91. Tenth Annual Joint Conf. IEEE Computer and Communications Societies. Networking in the 90s, 7–11 April 1991, vol. 3. IEEE: New York, 1991, pp. 1220–1227.

[84]J. Cai and U. Pooch, Play alone or together – truthful and efficient routing in wireless ad hoc networks with selfish nodes, in 2004 IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems, 25–27 October 2004, pp. 457–465.

[85]I. Sahin and M.A. Simaan, A game theoretic flow and routing control policy for two-node parallel link communication networks with multiple users, in 15th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, PIMRC 2004, vol. 4, 5–8 September 2004, pp. 2478–2482.

[86]E. Altman, T. Basar and R. Srikant, Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users, IEEE Trans. Autom. Control, vol. 47, no. 6, 2002, pp. 917–930.

REFERENCES 663

[87]T. Boulogne, E. Altman, H. Kameda and O. Pourtallier, Mixed equilibrium (ME) for multiclass routing games, IEEE Trans. Autom. Control, vol. 47, no. 6, 2002, pp. 903–916.

[88]A. Orda, R. Rom and N. Shimkin, Competitive routing in multi-user communication networks, in INFOCOM ’93. IEEE Twelfth Annual Joint Conf. IEEE Computer and Communications Societies. Networking: Foundation for the Future, 28 March to 1 April 1993, vol. 3, pp. 964–971.

[89]C.-H. Yeh and E.A. Varvarigos, A mathematical game and its applications to the design of interconnection networks, in Int. Conf. Parallel Processing, 3–7 September 2001, pp. 21–30.

[90]E. Altman and H. Kameda, Equilibria for multiclass routing in multi-agent networks, in IEEE Conf. Decision and Control, vol. 1, 4–7 December 2001, pp. 604–609.

[91]V. Marbukh, QoS routing under adversarial binary uncertainty, in IEEE Int. Conf. Communications, ICC 2002, vol. 4, 28 April to 2 May 2002, pp. 2268–2272.

[92]R.J. La and V. Anantharam, Optimal routing control: repeated game approach, IEEE Trans. Autom. Control, vol. 47, no. 3, 2002, pp. 437–450.

[93]R.J. La and V. Anantharam, Optimal routing control: game theoretic approach, in IEEE Conf. Decision and Control, vol. 3, 10–12 December 1997, pp. 2910–2915.

[94]Y.A. Korilis, A.A. Lazar and A. Orda, Capacity allocation under noncooperative routing, IEEE Trans. Autom. Control, vol. 42, no. 3, 1997, pp. 309–325.

[95]W. Wang, X.-Y. Li and O. Frieder, k-Anycast game in selfish networks, in Int. Conf. Computer Communications and Networks, 11–13 October 2004, pp. 289–294.

[96]V. Marbukh, Minimum cost routing: robustness through randomization, in IEEE Int. Symp. Information Theory, 2002, p. 127.

[97]R.E. Azouzi, E. Altman and O. Pourtallier, Properties of equilibria in competitive routing with several user types, in IEEE Conf. Decision and Control, vol. 4, 10–13 December 2002, pp. 3646–3651.

[98]O. Kabranov, A. Yassine and D. Makrakis, Game theoretic pricing and optimal routing in optical networks, in Int. Conf. Communication Technology Proc., vol. 1, 9–11 April 2003, pp. 604–607.

[99]M. Kodialam and T.V. Lakshman, Detecting network intrusions via sampling: a game theoretic approach, in IEEE Joint Conf. IEEE Computer and Communications Societies, INFOCOM 2003. vol. 3, 30 March to 3 April 2003, pp. 1880–1889.

[100]J. Zander, Jamming in slotted ALOHA multihop packet radio networks, IEEE Trans. Commun., vol. 39, no. 10, 1991, pp. 1525–1531.

[101]O. Ercetin and L. Tassiulas, Market-based resource allocation for content delivery in the Internet, IEEE Trans. Comput., vol. 52, no. 12, 2003, pp. 1573–1585.

[102]Y.A. Korilis, A.A. Lazar and A. Orda, Achieving network optima using Stackelberg routing strategies, IEEE/ACM Trans. Networking, vol. 5, no. 1, 1997, pp. 161–173.

[103]J. Zander, Jamming games in slotted Aloha packet radio networks, IEEE Military Communications Conf., MILCOM ’90, ‘A New Era’, vol. 2, 30 September to 3 October 1990, pp. 830–834.

[104]K. Yamamoto and S. Yoshida, Analysis of distributed route selection scheme in wireless ad hoc networks, in IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, vol. 1, 5–8 September 2004, pp. 584–588.

[105]Y.A. Korilis and A. Orda, Incentive compatible pricing strategies for QoS routing, in INFOCOM ’99, vol. 2, 21–25 March 1999, pp. 891–899.

664 ACTIVE NETWORKS

[106]K. Yamamoto and S. Yoshida, Stability of selfish route selections in wireless ad hoc networks, in Int. Symp. Multi-Dimensional Mobile Communications, 2004 and Joint Conf. 10th Asia-Pacific Conf. Communications, vol. 2, 29 August to 1 September 2004, pp. 853–857.

[107]R. Kannan and S.S. Iyengar, Game-theoretic models for reliable path-length and energy-constrained routing with data aggregation in wireless sensor networks, IEEE J. Select. Areas Commun., vol. 22, no. 6, August 2004, pp. 1141–1150.

[108]J. Cai and U. Pooch, Allocate fair payoff for cooperation in wireless ad hoc networks using Shapley value, in Int. Parallel and Distributed Processing Symp., 26–30 April 2004, p. 219.

[109]M. Alanyali, Learning automata in games with memory with application to circuitswitched routing, in IEEE Conf. Decision and Control, vol. 5, 14–17 December 2004, pp. 4850–4855.

[110]R. Atar and P. Dupuis, Characterization of the value function for a differential game formulation of a queueing network optimization problem, in IEEE Conf. Decision and Control, vol. 1, 7–10 December 1999, pp. 131–136.

[111]E. Altman, T. Basar and R. Srikant, Nash equilibria for combined flow control and routing in networks: asymptotic behaviour for a large number of users, in IEEE Conference on Decision and Control, vol. 4, 7–10 December 1999, pp. 4002–4007.

[112]A. Orda, R. Rom and N. Shimkin, Competitive routing in multiuser communication networks, IEEE/ACM Trans. Networking, vol. 1, no. 5, 1993, pp. 510–521.

[113]S. Irani and Y. Rabani, On the value of information in coordination games, in Annual Symp. Foundations of Computer Science, 1993, 3–5 November 1993, pp. 12–21.

[114]K. Loja, J. Szigeti and T. Cinkler, Inter-domain routing in multiprovider optical networks: game theory and simulations, in Next Generation Internet Networks, 18–20 April 2005, pp. 157–164.

[115]J.A. Almendral, L.L. Fernandez, V. Cholvi and M.A.F. Sanjuan, Oblivious router policies and Nash equilibrium, in Int. Symp. Computers and Communications, vol. 2, 28 June to 1 July 2004, pp. 736–741.

[116]J. Virapanicharoen and W. Benjapolakul, Fair-efficient guard bandwidth coefficients selection in call admission control for mobile multimedia communications using game theoretic framework, in Int. Conf. Communications, vol. 1, 20–24 June 2004, pp. 80–84.

[117]L. Berlemann, B. Walke and S. Mangold, Behavior based strategies in radio resource sharing games, in IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, vol. 2, 5–8 September 2004, pp. 840–846.

[118]N. Feng, S.-C. Mau and N.B. Mandayam, Pricing and power control for joint network-centric and user-centric radio resource management, IEEE Trans. Commun., vol. 52, no. 9, September 2004, pp. 1547–1557.

[119]R. Kannan, S. Sarangi, S.S. Iyengar and L. Ray, Sensor-centric quality of routing in sensor networks, in IEEE Joint Conf. IEEE Computer and Communications Societies, vol. 1, 30 March to 3 April 2003, pp. 692–701.

[120]C.U. Saraydar, N.B. Mandayam and D.J. Goodman, Efficient power control via pricing in wireless data networks, IEEE Trans. Commun., vol. 50, no. 2, 2002, pp. 291–303.

[121]V. Anantharam, On the Nash dynamics of congestion games with player-specific utility, in Conf. on Decision and Control, CDC, vol. 5, 14–17 December 2004, pp. 4673–4678.

REFERENCES 665

[122]Y. Zheng and Z. Feng, Evolutionary game and resources competition in the Internet, in The IEEE-Siberian Workshop of Students and Young Researchers Modern Communication Technologies, 28–29 November 2001, pp. 51–54.

[123]A. Aresti, B.M. Ninan and M. Devetsikiotis, Resource allocation games in connection-oriented networks under imperfect information, in IEEE Int. Conf. Communications, vol. 2, 20–24 June 2004, pp. 1060–1064.

[124]L. Libman and A. Orda, Atomic resource sharing in noncooperative networks, in INFOCOM ’97, vol. 3, 7–11 April 1997, pp. 1006–1013.

[124]T. Heikkinen, On distributed resource allocation of a multimedia network, in IEEE Vehicular Technology Conf., vol. 4, 19–22 September 1999, pp. 2116–2118.

[125]P. Fuzesi and A. Vidacs, Game theoretic analysis of network dimensioning strategies in differentiated services networks, in IEEE Int. Conf. Communications, vol. 2, 28 April to 2 May 2002, pp. 1069–1073.

[126]T. Alpcan and T. Basar, A game-theoretic framework for congestion control in general topology networks, in IEEE Conf. Decision and Control, vol. 2, 10–13 December 2002, pp. 1218–1224.

[127]M. Chatterjee, Haitao Lin, S.K. Das and K. Basu, A game theoretic approach for utility maximization in CDMA systems, IEEE Int. Conf. Commun., ICC ’03, vol. 1, 11–15 May 2003, pp. 412–416.

[128]I. Chlamtac, I. Carreras and H. Woesner, From Internets to BIONETS: Biological Kinetic Service Oriented Networks. Springer Science: Berlin, 2005, pp. 75–95.

[129]T. Nakano and T. Suda, Adaptive and evolvable network services, in K. Deb et al.

(eds). Genetic and Evolutionary Computation GECCO 2004, vol. 3102. Springer: Heidelberg, 2004, pp. 151–162.

[130]J. Suzuki and T. Suda, A middleware platform for a biologically inspired network architecture supporting autonomous and adaptive applications, IEEE J. Select. Areas Commun., vol. 23, no. 2, February 2005, pp. 249–260.

[131]I. Carreras, I. Chlamtac, H. Woesner and C. Kiraly, BIONETS: bio-inspired next generation networks, private communication, January 2005.

[132]I. Carreras, I. Chlamtac, H. Woesner and H. Zhang, Nomadic sensor networks, private communication, January 2005.

[133]T. Suda, T. Itao and M. Matsuo, The bio-networking architecture: the biologically inspired approach to the design of scalable, adaptive, and survivable/available network applications, in The Internet as a Large-Scale Complex System, K. Park (ed.). Princeton University Press: Princeton, NJ, 2005.

[134]T. Itao, S. Tanaka, T. Suda and T. Aoyama, A framework for adaptive UbiComp applications based on the jack-in-the-net architecture, Kluwer/ACM Wireless Network J., vol. 10, no. 3, 2004, pp. 287–299.

17

Network Deployment

17.1 CELLULAR SYSTEMS WITH OVERLAPPING COVERAGE

The concept of cellular communication systems is based on the assumption that a mobile user is served by the base station that provides the best link quality [1, 2]. Spectrum allocation strategies, discussed in Chapter 12, are based on this assumption. In many cases, however, a mobile user can establish a communication link of acceptable quality with more than one base. Therefore, at many locations there is overlapping coverage, usually by nearby base stations [3].

The coverage overlap can be used to improve the system performance. Several schemes that consider this have been suggested [4–8]. Generalized fixed channel assignment (GFCA), a scheme that allows a call to be served by any of several nearby base stations, was considered in Choudhury and Rappaport [4]. Directed retry, discussed in References [5, 6], allows a new call that cannot be served at one base to attempt access via a nearby alternative base. Load sharing is an enhancement of directed retry that allows calls in congested cells to be served by neighboring base stations. In Chu and Rappaport [7] overlapping coverage for highway microcells was considered. The use of overlapping coverage with channel rearrangement was discussed in Chu and Rappaport [8].

Reuse partitioning [9–11] can also improve traffic performance of fixed channel assignment (FCA). The method divides the channels into several disjoint partitions. These partitions are associated with different cluster sizes (or reuse factors). Channels are allocated to base stations according to these cluster sizes. To meet the same signal quality requirement, channels corresponding to smaller cluster sizes are used within a smaller area than that for channels associated with larger cluster sizes [9]. Since channels are reused more often for a smaller cluster size, there may be more channels available at a base in reuse partitioning than in FCA. Therefore, improved traffic performance can be obtained. Because there is a fixed relationship between channels and base stations, reuse partitioning is a fixed channel assignment scheme. In this section the acronym FCA is used only to refer

Advanced Wireless Networks: 4G Technologies Savo G. Glisic

C 2006 John Wiley & Sons, Ltd.