Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
готовая шпора по химии 35 билетов.doc
Скачиваний:
26
Добавлен:
18.05.2015
Размер:
156.16 Кб
Скачать

Билет№28

Электролиз – это окислительно восстановительные реакции, протекающие на электродах, если через раствор или расплав электролита пропускать постоянный электрический ток. При расплавлении соли и щелочи распадаются на ионы. Если через расплавы этих электролитов пропускать постоянный электрический ток, то ионы приобретают направленное движение, в результате на катоде восстанавливаются катионы металлов, а на аноде окисляются анионы.

При расплавлении хлорид натрия распадается на ионы K+  и  CI-

        KCI ----- K+ + CI-

  При подключении электродов к источнику постоянного электрического тока ионы приобретают направленное движение – катионы K+ движутся к катоду и принимают  от него электроны, анионы CI- - к аноду и отдают электроны.

    К (-)    K+ +е --- К0

    А (+)   2CI- -2е --- CI2

               электролиз

   2KCI ------------- 2K + CI2

Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Мат.закон Фарадея: m=(Э*q)/F или m=(M*I*t)/(n*F)

Билет№29

Инертным называется анод, материал которого не претерпевает окисления в ходе электролиза. Активным называется анод, материал которого может окисляться в ходе электролиза. В качестве материалов для инертных анодов чаще применяют графит уголь, платину.

На инертном аноде при электролизе водных растворов щелочей, кислородсодержащих кислот и их солей, а также фтористоводородной кислоты и фторидов происходит электрохимическое окисление воды с выделением кислорода. В зависимости от рН раствора этот процесс протекает по-разному и может быть записан различными уравнениями. В щелочной среде уравнение имеет вид

4ОН- =О2 + 2Н2О + 4е-

А в кислой или нейтральной:

2Н2О =О2 + 4Н+ + 4е-

В случае активного анода число конкурирующих окислительных процессов возрастает до трёх: электрохимическое окисление воды с выделением кислорода, разряд аниона (т.е. его окисление) и электрохимическое окисление металла анода (так называемое анодное растворение металла). Из этих возможных процессов будет идти тот, который энергетически наиболее выгоден. Если металл анода расположен в ряду стандартных потенциалов раньше обеих других электрохимических систем, то будет наблюдаться анодное растворение металла. В противном случае будет идти выделение кислорода или разряд аниона.

Билет№30

Коррозия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 6Н2О + ЗО2 = 4Fe(OH)3. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной. Химическая коррозия — взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом: 4Fe + 3O2 → 2Fe2O3 При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).